Difference between revisions of "Part:BBa K2984077"

 
Line 1: Line 1:
  
 +
__NOTOC__
 +
<partinfo>BBa_K2984077 short</partinfo>
 +
 +
One restricting factor for cultivating microalgae is the high risk of contamination with bacteria, fungi or zooplankton. As our Team anticipates in building a bioreactor it is essential to sterilize the media and all containers which raises the costs of production. Loera-Quezada et al. (2016) found a way to bypass this problem by integrating Pseudomonas stutzeri WM88 gene ptxD in C. reinhardtii. It encodes a phosphite oxidoreductase which is able to oxidize phosphite into phosphate using NAD+ as a cofactor (White & Metcalf, 2007). The integration of ptxD into the genome of C. reinhardtii enables the use of phosphite as a sole phosphorus source which wasn’t possible before (Loera-Quezada et al., 2015). Loera-Quezada et al. (2016) presented a new way of microalgae production without the need for sterile conditions or antibiotics to avoid contamination with biological pollutants as they can’t use phosphite as a phosphorus source. In the future this system could also by applied to open pond systems.
 +
 +
<!-- Add more about the biology of this part here
 +
===Usage and Biology===
 +
 +
<!-- -->
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K2984077 SequenceAndFeatures</partinfo>
 +
 +
 +
===MoClo Overhangs===
 +
<html>
 +
<p>This part with A1-A3 MoClo overhangs can be found <a href="https://parts.igem.org/wiki/index.php?title=Part:BBa_K2984022">here</a>.</p>
 +
 +
</html>
 +
 +
<!-- Uncomment this to enable Functional Parameter display
 +
===Functional Parameters===
 +
<partinfo>BBa_K2984077 parameters</partinfo>
 +
<!-- -->

Revision as of 20:33, 19 October 2019


PsaD Promoter; High-level expression of genes

One restricting factor for cultivating microalgae is the high risk of contamination with bacteria, fungi or zooplankton. As our Team anticipates in building a bioreactor it is essential to sterilize the media and all containers which raises the costs of production. Loera-Quezada et al. (2016) found a way to bypass this problem by integrating Pseudomonas stutzeri WM88 gene ptxD in C. reinhardtii. It encodes a phosphite oxidoreductase which is able to oxidize phosphite into phosphate using NAD+ as a cofactor (White & Metcalf, 2007). The integration of ptxD into the genome of C. reinhardtii enables the use of phosphite as a sole phosphorus source which wasn’t possible before (Loera-Quezada et al., 2015). Loera-Quezada et al. (2016) presented a new way of microalgae production without the need for sterile conditions or antibiotics to avoid contamination with biological pollutants as they can’t use phosphite as a phosphorus source. In the future this system could also by applied to open pond systems.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


MoClo Overhangs

This part with A1-A3 MoClo overhangs can be found here.