Difference between revisions of "Part:BBa K2918029"
Line 12: | Line 12: | ||
===Overview=== | ===Overview=== | ||
− | + | The part has been confirmed by sequencing and there are no mutations. | |
− | + | ||
− | + | ===Usage and Biology=== | |
− | The Φ29 replication | + | The Φ29 replication mechanism involves replication of a protein-primed based replication linear DNA. Protein primed replication, unlike the conventional DNA or RNA primed mechanism, do not depend on specific sequences of DNA/RNA and simplifies the design of replication systems. The Φ29 replication can be established by using four simple proteins: Φ29 DNA polymerase (DNAP/p2),terminal protein <html><a href="https://parts.igem.org/Part:BBa_K2918001"> (TP/p3)</a></html>, single stranded binding protein <html><a href="https://parts.igem.org/Part:BBa_K2918002"> (SSB/p5)</a></html> and double stranded binding protein <html><a href="https://parts.igem.org/Part:BBa_K2918003"> (DSB/p6)</a></html>. |
+ | The replication process begins by binding of the Φ29 DNA polymerase and terminal protein complex at the origins of replication (OriR and OriL), which flank the protein-primed linear plasmid <html><a href="#Nies2018">(Nies et al, 2018)</a></html>. The double stranded DNA binding proteins <html><a href="https://parts.igem.org/Part:BBa_K2918003"> (DSB/p6)</a></html> aid in the process of replication and bind more intensely at the origins of replication (OriR and OriL), destabilizing the region and facilitating strand displacement. Single stranded binding proteins bind to the displaced DNA strand preventing strand switching of the DNA polymerase and protecting the linear plasmid from host nucleases <html><a href="#Nies2018">(Nies et al, 2018)</a></html>. The replication mechanism is depicted in the Figure 1. | ||
+ | |||
+ | <div><ul> | ||
+ | <center> | ||
+ | <li style="display: inline-block;"> [[File:T--TUDelft--replicationpartstest.jpg|thumb|none|550px|<b>Figure 1:</b> Overview of phi 29 replication mechanism]] </li> | ||
+ | </center> | ||
+ | </ul></div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Strain Construction=== | ===Strain Construction=== |
Revision as of 22:09, 18 October 2019
OriL-GFP-Kan-OriR
Linear plasmid for replication by Φ29 replication machinery.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 664
Illegal EcoRI site found at 2056 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 664
Illegal EcoRI site found at 2056
Illegal NheI site found at 956 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 664
Illegal EcoRI site found at 2056
Illegal BamHI site found at 873 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 664
Illegal EcoRI site found at 2056 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 664
Illegal EcoRI site found at 2056 - 1000COMPATIBLE WITH RFC[1000]
The part has been confirmed by sequencing and there are no mutations.
Overview
The part has been confirmed by sequencing and there are no mutations.
Usage and Biology
The Φ29 replication mechanism involves replication of a protein-primed based replication linear DNA. Protein primed replication, unlike the conventional DNA or RNA primed mechanism, do not depend on specific sequences of DNA/RNA and simplifies the design of replication systems. The Φ29 replication can be established by using four simple proteins: Φ29 DNA polymerase (DNAP/p2),terminal protein (TP/p3), single stranded binding protein (SSB/p5) and double stranded binding protein (DSB/p6). The replication process begins by binding of the Φ29 DNA polymerase and terminal protein complex at the origins of replication (OriR and OriL), which flank the protein-primed linear plasmid (Nies et al, 2018). The double stranded DNA binding proteins (DSB/p6) aid in the process of replication and bind more intensely at the origins of replication (OriR and OriL), destabilizing the region and facilitating strand displacement. Single stranded binding proteins bind to the displaced DNA strand preventing strand switching of the DNA polymerase and protecting the linear plasmid from host nucleases (Nies et al, 2018). The replication mechanism is depicted in the Figure 1.
Strain Construction
The construct was assembled by golden gate assembly based modular cloning system. First, the individual transcriptional units were cloned into level 1 destination vectors [http://www.addgene.org/47998/pICH47732] and [http://www.addgene.org/47998/pICH47742] by BpiI based golden gate assembly. The multi-transcriptional unit construct was assembled by a BsaI based golden gate. The assembly was a one-pot restriction-ligation reaction where the individual level 1 constructs were added along with the destination vector [http://www.addgene.org/47998/pICH8031] and the construct was confirmed by sequencing. The cloning protocol can be found in the MoClo section below.
Modular Cloning
Modular Cloning (MoClo) is a system which allows for efficient one pot assembly of multiple DNA fragments. The MoClo system consists of Type IIS restriction enzymes that cleave DNA 4 to 8 base pairs away from the recognition sites. Cleavage outside of the recognition site allows for customization of the overhangs generated. The MoClo system is hierarchical. First, basic parts (promoters, UTRs, CDS and terminators) are assembled in level 0 plasmids in the kit. In a single reaction, the individual parts can be assembled into vectors containing transcriptional units (level 1). Furthermore, MoClo allows for directional assembly of multiple transcriptional units. Successful assembly of constructs using MoClo can be confirmed by visual readouts (blue/white or red/white screening). For the protocol, you can find it here.
Note: The basic parts sequences of the Sci-Phi 29 collection in the registry contain only the part sequence and therefore contain no overhangs or restriction sites. For synthesizing MoClo compatible parts, refer to table 2. The complete sequence of our parts including backbone can be found here.
Level | Basic/Composite | Type | Enzyme |
---|---|---|---|
Level 0 | Basic | Promoters, 5’ UTR, CDS and terminators | BpiI |
Level 1 | Composite | Transcriptional units | BsaI |
Level 2/M/P | Composite | Multiple transcriptional units | BpiI |
For synthesizing basic parts, the part of interest should be flanked by a BpiI site and its specific type overhang. These parts can then be cloned into the respective level 0 MoClo parts. For level 1, where individual transcriptional units are cloned, the overhangs come from the backbone you choose. The restriction sites for level 1 are BsaI. However, any type IIS restriction enzyme could be used.
Table 2: Type specific overhangs and backbones for MoClo. Green indicates the restriction enzyme recognition site. Blue indicates the specific overhangs for the basic parts
Basic Part | Sequence 5' End | Sequence 3' End | Level 0 backbone |
---|---|---|---|
Promoter | NNNN GAAGAC NN GGAG | TACT NN GTCTTC NNNN | pICH41233 |
5’ UTR | NNNN GAAGAC NN TACT | AATG NN GTCTTC NNNN | pICH41246 |
CDS | NNNN GAAGAC NN AATG | GCTT NN GTCTTC NNNN | pICH41308 |
Terminator | NNNN GAAGAC NN GCTT | CGCT NN GTCTTC NNNN | pICH41276 |
Characterization
References
- Nies, P. Van, Westerlaken, I., Blanken, D., Salas, M., Mencía, M., & Danelon, C. (n.d.). Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nature Communications, (2018), 1–12. https://doi.org/10.1038/s41467-018-03926-1
- Blanco, L., Bernads, A., Lharo, J. M., Martins, G., & Garmendia, C. (1989). Highly Efficient DNA Synthesis by the Phage 429 DNA Polymerase.