Difference between revisions of "Part:BBa K2967012"
Line 21: | Line 21: | ||
'''Figure 2. Diagram for fixed-gain amplifier in pCDFDuet-1 plasmid.''' T7 promoter, the gene downstream of this promoter will be transcribed when there is T7 RNA polymerase. ''lacO'', the sequence represses the nearby promoter when there is NO inducer (e.g. IPTG). RBS, ribosome binding site. ''hrpR'', ''hrpS'', the activator proteins. P''<sub>hrpL</sub>'', a promoter which can be induced by the ultrasensitive high-order co-complex ''hrpRS''. GFP, green fluorescent protein. | '''Figure 2. Diagram for fixed-gain amplifier in pCDFDuet-1 plasmid.''' T7 promoter, the gene downstream of this promoter will be transcribed when there is T7 RNA polymerase. ''lacO'', the sequence represses the nearby promoter when there is NO inducer (e.g. IPTG). RBS, ribosome binding site. ''hrpR'', ''hrpS'', the activator proteins. P''<sub>hrpL</sub>'', a promoter which can be induced by the ultrasensitive high-order co-complex ''hrpRS''. GFP, green fluorescent protein. | ||
− | https://static.igem.org/mediawiki/parts/thumb/e/ed/T--NEU_China--part-amplifier-f4h.png/ | + | https://static.igem.org/mediawiki/parts/thumb/e/ed/T--NEU_China--part-amplifier-f4h.png/320px-T--NEU_China--part-amplifier-f4h.png |
− | https://static.igem.org/mediawiki/parts/thumb/c/c5/T--NEU_China--part-amplifier-f6h.png/ | + | https://static.igem.org/mediawiki/parts/thumb/c/c5/T--NEU_China--part-amplifier-f6h.png/320px-T--NEU_China--part-amplifier-f6h.png |
'''Figure 3. Responses of the GFP without fixed-gain amplification (V-GFP) and with fixed-gain amplification (V-AM).''' The cells are induced by 5 varying concentrations of IPTG (0, 10<sup>-6</sup> M, 10<sup>-5</sup> M, 10<sup>-4</sup> M, 10<sup>-3</sup> M) after 4 and 6 hours (A, 4h; B, 6h). | '''Figure 3. Responses of the GFP without fixed-gain amplification (V-GFP) and with fixed-gain amplification (V-AM).''' The cells are induced by 5 varying concentrations of IPTG (0, 10<sup>-6</sup> M, 10<sup>-5</sup> M, 10<sup>-4</sup> M, 10<sup>-3</sup> M) after 4 and 6 hours (A, 4h; B, 6h). |
Revision as of 12:32, 15 October 2019
The fixed-gain bio-amplifier
The tunable biological amplifier (Fig. 1) comprises three modular terminals--the input, the output and a gain-tuning input. The device can continuously process the input transcriptional signal with an externally tunable gain (the amplification ratio of the changes in output to input) control.[1]
Figure 1. The composition of tunable biological amplifier. Transcription input can be amplified through the amplifier.
At first, we construct the fixed-gain amplifier (Fig. 2) for the prework. In order to reduce the impact of exotic microorganisms' colonizations in the intestine and to accelerate the secretion of IL-10 and myrosinase, we found a gain-tunable transcription amplifier in Pseudomonas syringae to tune amplifier the input signal.
To verify the fixed-gain amplification(Fig. 2) capability, we integrated the T7 promoter as the input of the fixed-gain amplifier with GFP as the output. When the transduced transcriptional input from the T7 promoter was connected to our amplifier, the resulting output signal amplitude and dynamic range increased significantly as well as the response sensitivity to the inducer (Fig 3.).
Figure 2. Diagram for fixed-gain amplifier in pCDFDuet-1 plasmid. T7 promoter, the gene downstream of this promoter will be transcribed when there is T7 RNA polymerase. lacO, the sequence represses the nearby promoter when there is NO inducer (e.g. IPTG). RBS, ribosome binding site. hrpR, hrpS, the activator proteins. PhrpL, a promoter which can be induced by the ultrasensitive high-order co-complex hrpRS. GFP, green fluorescent protein.
Figure 3. Responses of the GFP without fixed-gain amplification (V-GFP) and with fixed-gain amplification (V-AM). The cells are induced by 5 varying concentrations of IPTG (0, 10-6 M, 10-5 M, 10-4 M, 10-3 M) after 4 and 6 hours (A, 4h; B, 6h).
Method
We transformed 3 different vectors into E. coli BL-21 competent cell. Amplifier and GFP sequences were inserted into pcdfDuet-1 vectors which were called V-AM and V-GFP. Empty vectors with amplifier or GFP were named VE, VE-GFP and VE-AM. After vector transformation, we grow the transformed competent cells on the LB plates with streptomycin, once we got colonies, we cultured single colony in 5 ml LB medium overnight at 37oC. Next day, we washed bacteria by 1ml PBS and measure the cell growth pattern by photocytometer. In order to read for the fluorescent signals, we used LB-S (LB with streptomycin) to dilute bacteria and added them into the black 96-well plate (Cat#: 3916, Corning Corp.) with OD600=0.025 per well. Five different Isopropyl-beta-D-thiogalactopyranoside (IPTG) concentrations (0, 10-3 M, 10-4 M, 10-5 M and 10-6 M) were used to induce the T7 promoter activation and induce for 4 or 6 hours. After IPTG induction, the Enzyme Labeling Instrument were used to detect the green fluorescent signal. The excitation wavelength was 485 nm with the absorption wavelength 525 nm.
In conclusion, the amplifier achieves the desired effect, and the amplification gain is about 2 times. Comparing other amplifiers, this value is still low. In addition, we find that the gene expression process is accelerated with the amplifier, the reporter GFP usually reaching its saturation value after about 4 hours' induction.
Reference
[1]Jovanovic,M., James,E.H., Burrows,P.C., Rego,F.G.M., Buck,M. and Schumacher,J. (2011) Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat. Commun., 2:177.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 2102
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 1312
Illegal BsaI.rc site found at 3047
Illegal SapI.rc site found at 1945