Difference between revisions of "Part:BBa K2952014"
Line 1: | Line 1: | ||
− | Formate dehydrogenase (FDH_h) facilitates this reaction: CO2 + NADH <-> HCOO- + NAD+. Formic acid is a chemical commodity and can be easily stored and transported, making it a stable form of hydrogen fuel. It can be converted into hydrogen gas by E.coli's native formate | + | Formate dehydrogenase (FDH_h) facilitates this reaction: CO2 + NADH <-> HCOO- + NAD+. Formic acid is a chemical commodity and can be easily stored and transported, making it a stable form of hydrogen fuel. It can be converted into hydrogen gas by E.coli's native formate hydrogen lyase (Yoshida A., et al., 2005). This formate dehydrogenase has high binding affinities for NADH and CO2, and is expected to generate formate efficiently (Alissandratos, A., et al., 2013). |
Our modelling suggested that overexpression of FDH_h should increase hydrogen production more than any other hydrogenase. | Our modelling suggested that overexpression of FDH_h should increase hydrogen production more than any other hydrogenase. |
Revision as of 21:31, 10 October 2019
Formate dehydrogenase (FDH_h) facilitates this reaction: CO2 + NADH <-> HCOO- + NAD+. Formic acid is a chemical commodity and can be easily stored and transported, making it a stable form of hydrogen fuel. It can be converted into hydrogen gas by E.coli's native formate hydrogen lyase (Yoshida A., et al., 2005). This formate dehydrogenase has high binding affinities for NADH and CO2, and is expected to generate formate efficiently (Alissandratos, A., et al., 2013).
Our modelling suggested that overexpression of FDH_h should increase hydrogen production more than any other hydrogenase.
The transcriptional unit was assembled using loop assembly. Successful assembly was confirmed using diagnostic digestion and sequencing.
His-tagged FDH_h was over-expressed in E. coli BL21DE3 using T7 promoter (BBa_I712074). Successful expression after induction with IPTG was confirmed by his-tag purification and subsequent SDS-PAGE.
Activity was assayed through NADH oxidation at 37° and measuring absorbance at 340nm. This showed that recombinant FDH_h can be expressed in E. coli while still maintaining functionality.