Difference between revisions of "Part:BBa K2933189"
Line 55: | Line 55: | ||
The collected protein samples are concentrated in a 10 KD concentrating tube at a speed of 3400 rpm and concentrated for a certain time until the sample volume is 500 μl. At the same time, the superdex 200 column is equilibrated with a buffer to balance 1.2 column volumes. The sample is then loaded and 1.5 cylinders are eluted isocratically with buffer. Determine the state of protein aggregation based on the peak position and collect protein samples based on the results of running the gel.<br> | The collected protein samples are concentrated in a 10 KD concentrating tube at a speed of 3400 rpm and concentrated for a certain time until the sample volume is 500 μl. At the same time, the superdex 200 column is equilibrated with a buffer to balance 1.2 column volumes. The sample is then loaded and 1.5 cylinders are eluted isocratically with buffer. Determine the state of protein aggregation based on the peak position and collect protein samples based on the results of running the gel.<br> | ||
+ | |||
+ | ===References=== | ||
+ | [1]Dereje Dadi Gudeta, Valeria Bortolaia,The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance[J],Antimicrobial Agents and chemotherapy,January 2016<br> |
Latest revision as of 11:53, 24 September 2019
T7 promoter+RBS b+linker h+His+Linker a+Sumo+Linker b+CPS-1+T7 terminator
The part consists of T7 promoter,RBS and protein coding(His+Linker a+Sumo+Linker b+CPS-1)and the biological module can be built into E.coil for protein expression.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 390
Illegal XbaI site found at 47
Illegal PstI site found at 1026 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 390
Illegal NheI site found at 167
Illegal NheI site found at 1370
Illegal PstI site found at 1026 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 390
Illegal BglII site found at 279
Illegal BglII site found at 1308
Illegal BamHI site found at 478 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 390
Illegal XbaI site found at 47
Illegal PstI site found at 1026 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 390
Illegal XbaI site found at 47
Illegal PstI site found at 1026
Illegal AgeI site found at 927 - 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
This composite part is made up with nine basic parts, T7 promoter, the RBS b, the linker h, His tag,the linker a, Sumo tag, linker b, the gene of CPS-1 and T7 terminator.It encodes a protein which is CPS-1 fused with His and Sumo tag. The fusion protein is about 45.2 kD. In order to gain the highly purified target protein, we add GST tag in N-terminal of CPS-1 and combine Sumo tag to increased protein solubility. The fusion protein can be cut off at the cutting site by Prescission Protease. It is convenient for us to purify our target protein.
Molecular cloning
First, we used the vector pET28B-Sumo to construct our expression plasmid. And then we converted the plasmid constructed to E. coli DH5α to expand the plasmid largely.
Figure 1. a: The PCR result of CPS-1. b: The verification results by enzyme digestion.
After verification, it was determined that the construction is successful. We converted the plasmid to E. coli BL21(DE3) for expression and purification.
Expression and purification
Pre-expression:
The bacteria were cultured in 5mL LB liquid medium with ampicillin(100 μg/mL final concentration) in 37℃ overnight.
Massive expressing:
After taking samples, we transfered them into 1L LB medium and add antibiotic to 100 μg/mL final concentration. Grow them up in 37°C shaking incubator. Grow until an OD 600 nm of 0.8 to 1.2 (roughly 3-4 hours). Induce the culture to express protein by adding 1 mM IPTG (isopropylthiogalactoside, MW 238 g/mol). Put the liter flasks in 16°C shaking incubator for 16h.
Affinity Chromatography:
We used the Ni-sepharose to purify the target protein. The Ni-sepharose can combine specifically with the His tag fused with target protein.
- First, wash the column with water for 10 minutes. Change to Ni-binding buffer for another 10 minutes and balance the Ni column.
- Second, add the protein solution to the column, let it flow naturally and bind to the column.
- Third, add Ni-Washing buffer several times and let it flow. Take 5ul of wash solution and test with Coomassie Brilliant Blue. Stop washing when it doesn’t turn blue.
- Forth, add Ni-Elution buffer several times. Check as above.
- Fifth, collect the eluted proteins for further operation.
Anion exchange column:
According to the predicted pI of the protein and the pH of the ion-exchange column buffer, firstly select the appropriate ion exchange column (anion exchange column or cation exchange column). The pH of buffer should deviate from the isoelectric point of the protein. Since the isoelectric point of our protein is 5.88 in theory, we choose buffer pH of 7.4 and use anion exchange column for purification.
The protein is concentrated with a 10KD concentration tube, and then the exchange buffer is used to exchange the protein to the ion-exchange liquid A. Finally, it is concentrated to less than 5ml by centrifuging at 4℃ and 3400rpm for 10 minutes in a high-speed centrifuge to remove insoluble substances and bubbles.
Balance the selected column with liquid A. Through the AKTApure protein purification system, the samples are loaded to the column at a flow rate of 0.5ml/min, and continue washing for 5min. Gradually increase the content of liquid B in the column, change the salt concentration and then change the interaction between the sample and the column, and collect the corresponding eluent according to the position of the peak. Use SDS-PAGE to check the result.
The collected protein samples are concentrated in a 10 KD concentrating tube at a speed of 3400 rpm and concentrated for a certain time until the sample volume is 500 μl. At the same time, the superdex 200 column is equilibrated with a buffer to balance 1.2 column volumes. The sample is then loaded and 1.5 cylinders are eluted isocratically with buffer. Determine the state of protein aggregation based on the peak position and collect protein samples based on the results of running the gel.