Difference between revisions of "Part:BBa K3039004"

 
Line 3: Line 3:
 
<partinfo>BBa_K3039004 short</partinfo>
 
<partinfo>BBa_K3039004 short</partinfo>
  
The enzymes PETase and MHETase were first discovered in Ideonella sakaiensis in 2016 by a group of researchers in Japan. These enzymes were found to degrade polyethylene terephthalate (PET) into its monomers, terephthalic acid (TPA) and ethylene glycol (EG). PETase degrades PET into Mono-(2-hydroxyethyl)terephthalic acid (MHET), Bis(2-Hydroxyethyl) terephthalate (BHET) and TPA, the main product being MHET. MHET is further degraded by MHETase into TPA and EG. We are aiming to use mutants of these enzymes to degrade the microfibres that are coming off clothing during washing cycles. The enzymes would be secreted into a filter that captures the microfibres. This sequence is the Escherichia coli K12 (E. coli K12) codon optimized DNA of the W397A mutant MHETase, with an attached His tag. The His tag was attached in order to more easily identify the enzymes. This mutation has been reported in past papers to increase the activity of MHETase.  
+
The enzymes PETase and MHETase were first discovered in <I>Ideonella sakaiensis</I> in 2016 by a group of researchers in Japan. These enzymes were found to degrade polyethylene terephthalate (PET) into its monomers, terephthalic acid (TPA) and ethylene glycol (EG). PETase degrades PET into Mono-(2-hydroxyethyl)terephthalic acid (MHET), Bis(2-Hydroxyethyl) terephthalate (BHET) and TPA, the main product being MHET. MHET is further degraded by MHETase into TPA and EG. We are aiming to use mutants of these enzymes to degrade the microfibres that are coming off clothing during washing cycles. The enzymes would be secreted into a filter that captures the microfibres. This sequence is the Escherichia coli K12 (E. coli K12) codon optimized DNA of the S416A_F424N mutant MHETase, with an attached His tag. The His tag was attached in order to more easily identify the enzymes. The wild type MHETase doesn’t show BHET degrading activity. These mutations have been reported in past papers to give MHETase the ability to degrade BHET.
 +
  
  

Revision as of 08:33, 30 August 2019


MHETase W397A

The enzymes PETase and MHETase were first discovered in Ideonella sakaiensis in 2016 by a group of researchers in Japan. These enzymes were found to degrade polyethylene terephthalate (PET) into its monomers, terephthalic acid (TPA) and ethylene glycol (EG). PETase degrades PET into Mono-(2-hydroxyethyl)terephthalic acid (MHET), Bis(2-Hydroxyethyl) terephthalate (BHET) and TPA, the main product being MHET. MHET is further degraded by MHETase into TPA and EG. We are aiming to use mutants of these enzymes to degrade the microfibres that are coming off clothing during washing cycles. The enzymes would be secreted into a filter that captures the microfibres. This sequence is the Escherichia coli K12 (E. coli K12) codon optimized DNA of the S416A_F424N mutant MHETase, with an attached His tag. The His tag was attached in order to more easily identify the enzymes. The wild type MHETase doesn’t show BHET degrading activity. These mutations have been reported in past papers to give MHETase the ability to degrade BHET.


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 260
    Illegal PstI site found at 1021
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 260
    Illegal PstI site found at 1021
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 260
    Illegal PstI site found at 1021
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 260
    Illegal PstI site found at 1021
  • 1000
    COMPATIBLE WITH RFC[1000]