Difference between revisions of "Part:BBa K2549030"
(→Biology) |
(LC) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 11: | Line 11: | ||
<!-- Add more about the biology of this part here --> | <!-- Add more about the biology of this part here --> | ||
===Biology=== | ===Biology=== | ||
+ | =====Our characterization===== | ||
+ | [[File:sTF-test.png|none|360px|thumb|'''Interaction between transcriptional repressors and their binding sites.''' A degradable EGFP (d2EGFP) is produced downstream the promoter to indicate the output strength. Experiments were conducted and analyzed as previous reported<ref>http://2017.igem.org/Team:Fudan/Demonstrate</ref>. DBD, DNA binding domain which is zinc finger in our assay. SD, silencing-form transcriptional domain; we used KRAB for the experiments in this figure. RE, responsive elements. MFI, median fluorescence intensity.]] | ||
+ | |||
+ | Flow cytometry results suggest that the transcriptional repressors can effectively inhibit the promoters with responsive elements. Please visit http://2018.igem.org/Team:Fudan/Demonstrate for a brief introduction of our project. | ||
+ | |||
=====Synthetic promotor operators regulated by artificial zinc finger-based transcription factors===== | =====Synthetic promotor operators regulated by artificial zinc finger-based transcription factors===== | ||
Line 16: | Line 21: | ||
[[File:ZF2.jpg|none|240px|thumb|Khalil AS et al stated:''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']] | [[File:ZF2.jpg|none|240px|thumb|Khalil AS et al stated:''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Latest revision as of 18:46, 6 November 2018
8*ZF42.10-CMV
This part is one of the response elements of our amplifier, also executing the combiner function. 8*ZF42.10 binding sites (Part:BBa_K2549012) is assembled using two 4*ZF42.10 binding sites (Part:BBa_K2446005) with a biobrick scar between them. CMV (Part:BBa_K2549050) is a promotor which has a high-level constitutive expression. This part can switch off the expression of gene downstream after induced by our zinc finger-based transcription repressor.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Biology
Our characterization
Flow cytometry results suggest that the transcriptional repressors can effectively inhibit the promoters with responsive elements. Please visit http://2018.igem.org/Team:Fudan/Demonstrate for a brief introduction of our project.
Synthetic promotor operators regulated by artificial zinc finger-based transcription factors
Khalil AS et al have reported several synthetic promotor operators which can interact with artificial zinc finger-based transcription factors with high specificity and high orthogonality[2].