Difference between revisions of "Part:BBa K2788002"
(→iGEM2018 SZU-China) |
(→iGEM2018 SZU-China) |
||
(One intermediate revision by the same user not shown) | |||
Line 44: | Line 44: | ||
We gain the total protein by FastPrep and ultrasonic crushing. The lysate was then centrifuged and the supernatant were electrophoresed on a sodium dodecyl sulfate(SDS)-12% (wt/vol) polyacrylamide gel, followed by Coomassie blue staining(Fig.4) | We gain the total protein by FastPrep and ultrasonic crushing. The lysate was then centrifuged and the supernatant were electrophoresed on a sodium dodecyl sulfate(SDS)-12% (wt/vol) polyacrylamide gel, followed by Coomassie blue staining(Fig.4) | ||
<div> | <div> | ||
− | <center><html><img src='https://static.igem.org/mediawiki/2018/9/93/T--SZU-China--Result-MCL1-4.png' style="width: | + | <center><html><img src='https://static.igem.org/mediawiki/2018/9/93/T--SZU-China--Result-MCL1-4.png' style="width:20%;margin:0 auto"> |
<center>Fig.4 SDS-PAGE analysis of total protein of wild-type Metarhizium anisopliae 128 and genetically enhanced Metarhizium anisopliae 128. Lane M: Marker Ladder;Lane 1:wild type Metarhizium anisopliae 128;Lane 2 : recombinant Metarhizium anisopliae 128.Lane 2 showed the band corresponded with the molecular weight of collagen-like protein(60.4kDa).</center></html></center> | <center>Fig.4 SDS-PAGE analysis of total protein of wild-type Metarhizium anisopliae 128 and genetically enhanced Metarhizium anisopliae 128. Lane M: Marker Ladder;Lane 1:wild type Metarhizium anisopliae 128;Lane 2 : recombinant Metarhizium anisopliae 128.Lane 2 showed the band corresponded with the molecular weight of collagen-like protein(60.4kDa).</center></html></center> | ||
</div> | </div> |
Latest revision as of 22:37, 17 October 2018
Encoded by the gene MCL1 from Metarhizium robertsii ARSEF 23
The gene MCL1 from the Metarhizium robertsii ARSEF 23 MCL1 encodes collagen-like protein, which forms a collagenous protective coat to evade insect immune responses.GenBank Acce NO.XM_007819663.1
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 157
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 1688
Illegal NgoMIV site found at 1739
Illegal NgoMIV site found at 1864
Illegal AgeI site found at 1670 - 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 1106
Illegal SapI site found at 1882
Illegal SapI site found at 1901
er
iGEM2018 SZU-China
MCL1 from the Metarhizium robertsii ARSEF 23 MCL1 encodes collagen-like protein, which can combine with β-1,3-glucan on the fungus cell wall.β-1,3-glucan is the recognization site for insect hemocytes to recognize and clear incaders.With collagen-like protein,fungus is like putting an "invisible cloak"which can avoid host immune response.Immune-avoidance makes clonization and causing death smoothly. This part was inserted into the pBC expression vector by restriction sites EcoRI and PstI (Fig.1), and the correct construction of this recombinant plasmid was confirmed by PCR identification and sequencing of the PCR products.
We transferred the expression vector MCL1-pBC by CaCl ₂ -PEG induction method,then screen transformant by G418 resistance genes and colony PCR.PCR product was identified by agarose gel electrophoresis(Fig.2)
The transformed strain Metarhizium anisopliae 128 was grown in 1/4 SDAY liquid medium, and obtain total RNA by using RNAiso Plus(TAKARA), reverse transcription by using TAKARA PrimeScript™ RT reagent Kit,then perform quantitative PCR.(Fig.3)
We gain the total protein by FastPrep and ultrasonic crushing. The lysate was then centrifuged and the supernatant were electrophoresed on a sodium dodecyl sulfate(SDS)-12% (wt/vol) polyacrylamide gel, followed by Coomassie blue staining(Fig.4)
In order to verify the ability of immune-avoidance of M.anasopliae,we inject hyphae homogenate into cockroaches,then extract hemolymph, count the nodules formed of hemocytes(Criteria:more than 10 hemocytes assemble closely)(Fig.5) and observe hemolymph smear under phase contrast microscope(Fig.6)