Difference between revisions of "Part:BBa K2549016"
(8 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K2549016 short</partinfo> | <partinfo>BBa_K2549016 short</partinfo> | ||
− | This part is the first of our SynNotch receptors, as original published<ref>Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Morsut L, Roybal KT, Xiong X, ..., Thomson M, Lim WA. Cell, 2016 Feb;164(4):780-91 PMID: 26830878; DOI: 10.1016/j.cell.2016.01.012</ref>. LaG17 ([[Part:BBa_K2549004]]) is used as the extracellular sensor module to receive the signal input from GFP. mN1c ([[Part:BBa_K2549006]]) is served as the transmembrane core domain of SynNotch, which is evident to have a low basal expression and a high activation efficiency. tTAA ([[Part:BBa_K2446057]]) is an improved tetracycline-controlled transcription activator | + | This part is the first version of our SynNotch receptors, as original published<ref>Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Morsut L, Roybal KT, Xiong X, ..., Thomson M, Lim WA. Cell, 2016 Feb;164(4):780-91 PMID: 26830878; DOI: 10.1016/j.cell.2016.01.012</ref>. LaG17 ([[Part:BBa_K2549004]]) is used as the extracellular sensor module to receive the signal input from GFP. mN1c ([[Part:BBa_K2549006]]) is served as the transmembrane core domain of SynNotch, which is evident to have a low basal expression and a high activation efficiency. tTAA ([[Part:BBa_K2446057]]) is an improved tetracycline-controlled transcription activator<ref>Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Urlinger S, Baron U, Thellmann M, ..., Bujard H, Hillen W. Proc Natl Acad Sci U S A, 2000 Jul;97(14):7963-8 PMID: 10859354</ref>, which is cleaved after SynNotch activation and drives the expression of the amplifier. Besides, a CD8α signal peptide ([[Part:BBa_K2549044]]) and a Myc-tag ([[Part:BBa_K823036]]) were added to the N terminal of LaG17([[Part:BBa_K2549004]]) for membrane targeting and easy determination of surface expression. |
<!-- --> | <!-- --> | ||
Line 12: | Line 12: | ||
<!-- Add more about the biology of this part here --> | <!-- Add more about the biology of this part here --> | ||
===Biology=== | ===Biology=== | ||
− | ==== | + | =====Our characterization===== |
+ | [[File:bestNotch.jpg|none|400px|thumb|'''Flow cytometry results of SynNotch activation.''' surAg, surface antigens, which was surface-expressed CD19 for αCD19-SynNotch or surface-expressed EGFP for LaG-SynNotch, respectively. Without surAg, the EGFP (Y axis, driven by tTAA released after SynNotch activation) was low, and it went high after adding surAg. More details please visit http://2018.igem.org/Team:Fudan/Results and http://2018.igem.org/Team:Fudan/Optimization .]] | ||
− | + | It is obvious that LaG17-mN1c-tTAA can be significantly activated by surface-expressed EGFP. | |
− | |||
− | + | =====SynNotch receptors function well in Morsut L et al 2016===== | |
− | + | [[File:SynNotch.jpeg|none|300px|thumb|Morsut L et al stated:''SynNotch receptors provide extraordinary flexibility in engineering cells with customized sensing/response behaviors to user-specified extracellular cues.'']] | |
− | + | ||
+ | [[File:SynNotchECDandICD.jpeg|none|400px|thumb|Morsut L et al have shown that modularity of the synNotch platform. They stated: ''the input and output domains from Notch can be swapped with diverse domains. On the extracellular side, diverse recognition domains can be used (antibody based, or peptide tags are shown) and on the intracellular side, diverse effector can be used (transcriptional activators with different DNA-binding domains are shown, as well as a transcriptional repressor).'']] | ||
+ | |||
+ | Please refer to the original article for more details. | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Latest revision as of 19:10, 17 October 2018
LaG17-mN1c-tTAA
This part is the first version of our SynNotch receptors, as original published[1]. LaG17 (Part:BBa_K2549004) is used as the extracellular sensor module to receive the signal input from GFP. mN1c (Part:BBa_K2549006) is served as the transmembrane core domain of SynNotch, which is evident to have a low basal expression and a high activation efficiency. tTAA (Part:BBa_K2446057) is an improved tetracycline-controlled transcription activator[2], which is cleaved after SynNotch activation and drives the expression of the amplifier. Besides, a CD8α signal peptide (Part:BBa_K2549044) and a Myc-tag (Part:BBa_K823036) were added to the N terminal of LaG17(Part:BBa_K2549004) for membrane targeting and easy determination of surface expression.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 87
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 2154
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 127
Illegal SapI.rc site found at 1069
Biology
Our characterization
It is obvious that LaG17-mN1c-tTAA can be significantly activated by surface-expressed EGFP.
SynNotch receptors function well in Morsut L et al 2016
Please refer to the original article for more details.
References
- ↑ Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Morsut L, Roybal KT, Xiong X, ..., Thomson M, Lim WA. Cell, 2016 Feb;164(4):780-91 PMID: 26830878; DOI: 10.1016/j.cell.2016.01.012
- ↑ Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Urlinger S, Baron U, Thellmann M, ..., Bujard H, Hillen W. Proc Natl Acad Sci U S A, 2000 Jul;97(14):7963-8 PMID: 10859354