Difference between revisions of "Part:BBa K2615005"
(→The result by flow cytometer) |
(→Result) |
||
Line 32: | Line 32: | ||
=='''''Result'''''== | =='''''Result'''''== | ||
− | ===Proof of functions about Csy4 | + | ===Proof of functions about Csy4 mutants=== |
<p> | <p> | ||
− | + | In this part, three kinds of experiments help us to confirm the functions of Csy4 mutants including recognition and cleavage. Our expectation is that by using new Csy4 mutants, the expression level of sfGFP vary with Csy4s' capabilities. It means that miniToe family members present various expression of target genes. | |
<br> | <br> | ||
</p> | </p> | ||
Line 43: | Line 43: | ||
<br> | <br> | ||
[[Image:T--OUC-China--prediction.jpg|center|thumb|500px|'''Fig.4 The predication: The fluorescence intensities by different Csy4 mutants along with time.''']] | [[Image:T--OUC-China--prediction.jpg|center|thumb|500px|'''Fig.4 The predication: The fluorescence intensities by different Csy4 mutants along with time.''']] | ||
+ | <br> | ||
+ | </p> | ||
+ | <p> | ||
+ | We designed three kinds experiments to test the capabilities of five Csy4 mutants by putting them into miniToe system. So the recombination strains for test both have same pReporter but different Csy4 mutants plasmids in the following. The recombination strains to test the functions of Csy4 are strain-Csy4 (pCsy4&pReporter), strain-Csy4-Q104A (pCsy4-Q104A&pReporter), strain-Csy4-Y176F (pCsy4-Y176F&pReporter), strain-Csy4-F155A (pCsy4-F155A&pReporter), strain-Csy4-H29A (pCsy4-H29A&pReporter). At the same time, we have a control strain named strain-miniToe-only which only has pReporter. | ||
</p> | </p> | ||
− | ===The | + | ===The result by microscope=== |
<p> | <p> | ||
− | First, we | + | First, we tested the capabilities of five Csy4 mutants by Fluorescent Stereo Microscope Leica M165 FC. The sfGFP accumulated during the cultivation period so the fluorescence can be observed by microscope after 8 hours. Because the five Csy4 mutants have different capabilities of cleavage, the distinguishing intensities of fluorescent can be seen by naked eyes. The five test strains have same miniToe part but different Csy4 mutant genes. In Fig.5, there are fluorescence images by fluorescent microscope which indicate strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A in sequence. The visible distinctions have shown in these images. The fluorescence intensities decrease one by one from top to bottom which means the Csy4s' capabilities of cleavage decrease one by one. The Csy4-WT has the strongest capability of cleavage when the Csy4-H29A is a kind of dead-Csy4 (dCsy4) which is hardly to find the fluorescence by microscope. The qualitative experiment is a basis of further experiments. |
<br> | <br> | ||
[[Image:T--OUC-China--WT1.png|center|thumb|940px|'''Fig.5-1 The expression of sfGFP by Csy4-WT&miniToe-WT.''']] | [[Image:T--OUC-China--WT1.png|center|thumb|940px|'''Fig.5-1 The expression of sfGFP by Csy4-WT&miniToe-WT.''']] | ||
Line 59: | Line 63: | ||
[[Image:T--OUC-China--H1.png|center|thumb|940px|'''Fig.5-5 The expression of sfGFP by Csy4-H29A&miniToe-WT.''']] | [[Image:T--OUC-China--H1.png|center|thumb|940px|'''Fig.5-5 The expression of sfGFP by Csy4-H29A&miniToe-WT.''']] | ||
<br> | <br> | ||
+ | </p> | ||
+ | <p> | ||
+ | From top to bottom, the images shows the expression of sfGFP by strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A in sequence. The plotting scale is on the right corner of images. The images on the left shows E. coli without fluorescence excitation. The images on the right represent situation when fluorescence excitation. | ||
</p> | </p> | ||
===The result by flow cytometer=== | ===The result by flow cytometer=== | ||
<p> | <p> | ||
− | The qualitative experiment is not enough to analyze | + | The qualitative experiment is not enough to analyze the Csy4 mutants. So we tested miniToe family system by flow cytometer. The expression of sfGFP by strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A is showed in Fig.2-5, and their intensities of fluorescence are from strong to weak. |
<br> | <br> | ||
− | [[Image:T--OUC-China--fluorescence.jpg|center|thumb|600px|'''Fig.6 | + | [[Image:T--OUC-China--fluorescence.jpg|center|thumb|600px|'''Fig.6 The fluorescence intensities of sfGFP about Csy4 mutants by flow cytometer. Histograms show distribution of fluorescence in samples with strain-Csy4 (Black), strain-Csy4-Q104A (Orange), strain-Csy4-Y176F (Red), strain-Csy4-F155A (Blue), strain-Csy4-H29A (Green). Crosscolumn number shows fold increase of sfGFP fluorescence.''']] |
<br> | <br> | ||
− | [[Image:T--OUC-China--JCPE.png|center|thumb|600px|'''Fig.7 The Gate Mean of flow cytometer. Histograms show the relative expression of sfGFP. The five test groups present different fluorescence intensities from high to low | + | [[Image:T--OUC-China--JCPE.png|center|thumb|600px|'''Fig.7 The Gate Mean of flow cytometer. Histograms show the relative expression of sfGFP. The five test groups present different fluorescence intensities from high to low which prove that they have different capabilities of cleavage.''']] |
</p> | </p> | ||
===The result by microplate reader=== | ===The result by microplate reader=== | ||
<p> | <p> | ||
− | Besides all the works | + | Besides all the works before, we also need to know more information about the Csy4 mutants in entire cultivation period. Even though we known that our Csy4 mutants have differentiated expression level in ten-hour-culture, the expression of whole cultivation period is also a reference for us to know if our system can work as expectations. |
<br> | <br> | ||
<br> | <br> | ||
− | + | So we tested five test stains individually (strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A) by microplate reader every two hours. The green lines in all the images represents strain-miniToe-only group keep stable. It means the miniToe structure fold well and lock the process of translation without Csy4. And the five test groups show different characteristics. In Fig.8-A, the group strain-Csy4 shows the same result with the first system. The switch turns off without IPTG (as the blue line shows). And the expression level is the highest among all the test groups which indicates the Csy4-WT has strongest capabilities (Fig.8-F). In the Fig.8-B, the tendency of fluorescence intensities by Csy4-Q104A is similar with Csy4-WT. And the expression level is lower than Csy4-WT. The Csy4-Y176F’s capabilities ranks the third. What is special is Csy4-H29A. The active site of Csy4 contains an essential histidine residue (H29) that functions as a general base during RNA strand scission. Mutation of H29 to alanine inactivates Csy4 without affecting substrate binding affinity or specificity. So Csy4-H29A is a dead-Csy4 which has high binding affinity but has lowest capabilities of cleavage as we can see in Fig.8-E. In summary, we put all the test groups together in Fig.8-F, the picture shows prediction by model match the result perfectly in Fig.9. | |
<br> | <br> | ||
− | [[Image:T--OUC-China--microplate reader.jpg|center|thumb|700px|'''Fig.8 The fluorescence intensities of sfGFP by microplate reader. A. Csy4 | + | [[Image:T--OUC-China--microplate reader.jpg|center|thumb|700px|'''Fig.8 The fluorescence intensities of sfGFP by microplate reader. A. strain-Csy4. B. strain-Csy4-Q104A. C. strain-Csy4-Y176F. D. strain-Csy4-F155A. E. strain-Csy4-H29A. A-E. The blue line is test group with IPTG. The yellow line is test group without IPTG. The green line is a control group which only has miniToe structure without Csy4s. F. The summary of different test groups which indicates the capabilities of Csy4 mutants. The results are listed in the order: Csy4-WT>Csy4-Q104A>Csy4-Y176F>Csy4-F155A>Csy4-H29A.''']] |
<br> | <br> | ||
[[Image:T--OUC-China--matchs.jpg|center|thumb|700px|'''Fig.9 The comparison about model and result by microplate reader. ''']] | [[Image:T--OUC-China--matchs.jpg|center|thumb|700px|'''Fig.9 The comparison about model and result by microplate reader. ''']] | ||
<br> | <br> | ||
</p> | </p> | ||
+ | <p> | ||
+ | By all the experiments mentioned before, we proved that Csy4 mutants work as expectations successfully. The results are listed in the order: Csy4-WT>Csy4-Q104A>Csy4-Y176F>Csy4-F155A>Csy4-H29A. And the original sequences of Csy4 part has been submitted by other iGEM teams before, so this year we improved their work by enlarging Csy4 to a Csy4 family. | ||
+ | </p> | ||
+ | |||
===In summary=== | ===In summary=== |
Revision as of 13:10, 17 October 2018
Csy4-Y176F, the No.3 member of Csy4 family.
Csy4 (Csy6f), a member of CRISPR family.
Csy4 is a 21.4 kDa protein that binds and cleaves at the 3' side of a stable RNA hairpin structure via sequence- and structure-specific contacts. Csy4 binds its substrate RNA with extremely high affinity and functions as a single-turnover enzyme. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. A highly basic a-helix docks into the major groove of the hairpin and contains multiple arginine residues that form a network of hydrogen.
Background of 2018 OUC-China's project
This year, we design a toolkit focused on translational regulation, which is composed of a RNA endoribonuclease (Csy4) and a RNA module (hairpin). In our project, the cleavage function of Csy4 releases a cis-repressive RNA module (crRNA, paired with RBS) from the masked ribosome binding site (RBS), which subsequently allows the downstream translation initiation. A Ribosome Binding Site (RBS) is an RNA sequence to which ribosomes can bind and initiate translation.
We want to achieve precise expression of proteins by using different Csy4 mutants. The aim is using one system to realize diverse expression. We focus on the sites which play an important role in binding and cleavage. Gln104 is located in the linker segment connecting the body of Csy4 to the arginine-rich area, which makes sequence-specific hydrogen bonding contacts in the major groove of the RNA stem to nucleotides G20 and A19. His29 is in its deprotonated form and functions as a general base during cleavage by activating the 2′-hydroxyl nucleophile through proton abstraction. The side chain of Tyr176 points into the active site and stacks on top of the His29 imidazole group, which plays a role in orienting His 29. Phe155 is to recognize the ssRNA-dsRNA junctions in RNA hairpin. Based on the molecular simulation and the theory of fluctuations, four mutants are chosen rationally: Q104A, H29A, Y176F, F155A.
Csy4-Y176F,a new Csy4 mutant.
Csy4-Y176F, which is a Csy4 mutant selected by 2018 OUC-China. We design this part by point mutating the 176th site of origin Csy4. This change lead to the decrease of the activity which contain recognition and cleavage rates from Csy4.
Combined RBS and Csy4, it can be more convenient for other iGEMers to use this composite part without putting a RBS sequence on the upstream of Csy4 coding sequence.The length of this part is 588bp, and the electrophoretic result shows the validity of stripe.
Result
Proof of functions about Csy4 mutants
In this part, three kinds of experiments help us to confirm the functions of Csy4 mutants including recognition and cleavage. Our expectation is that by using new Csy4 mutants, the expression level of sfGFP vary with Csy4s' capabilities. It means that miniToe family members present various expression of target genes.
Prediction
Before the experiments, we have proved our ideas by model. The predication below shows the possibilities of different expression levels by different Csy4 mutants. So the model help us to get more information for our improvement deeply this year!
We designed three kinds experiments to test the capabilities of five Csy4 mutants by putting them into miniToe system. So the recombination strains for test both have same pReporter but different Csy4 mutants plasmids in the following. The recombination strains to test the functions of Csy4 are strain-Csy4 (pCsy4&pReporter), strain-Csy4-Q104A (pCsy4-Q104A&pReporter), strain-Csy4-Y176F (pCsy4-Y176F&pReporter), strain-Csy4-F155A (pCsy4-F155A&pReporter), strain-Csy4-H29A (pCsy4-H29A&pReporter). At the same time, we have a control strain named strain-miniToe-only which only has pReporter.
The result by microscope
First, we tested the capabilities of five Csy4 mutants by Fluorescent Stereo Microscope Leica M165 FC. The sfGFP accumulated during the cultivation period so the fluorescence can be observed by microscope after 8 hours. Because the five Csy4 mutants have different capabilities of cleavage, the distinguishing intensities of fluorescent can be seen by naked eyes. The five test strains have same miniToe part but different Csy4 mutant genes. In Fig.5, there are fluorescence images by fluorescent microscope which indicate strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A in sequence. The visible distinctions have shown in these images. The fluorescence intensities decrease one by one from top to bottom which means the Csy4s' capabilities of cleavage decrease one by one. The Csy4-WT has the strongest capability of cleavage when the Csy4-H29A is a kind of dead-Csy4 (dCsy4) which is hardly to find the fluorescence by microscope. The qualitative experiment is a basis of further experiments.
From top to bottom, the images shows the expression of sfGFP by strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A in sequence. The plotting scale is on the right corner of images. The images on the left shows E. coli without fluorescence excitation. The images on the right represent situation when fluorescence excitation.
The result by flow cytometer
The qualitative experiment is not enough to analyze the Csy4 mutants. So we tested miniToe family system by flow cytometer. The expression of sfGFP by strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A is showed in Fig.2-5, and their intensities of fluorescence are from strong to weak.
The result by microplate reader
Besides all the works before, we also need to know more information about the Csy4 mutants in entire cultivation period. Even though we known that our Csy4 mutants have differentiated expression level in ten-hour-culture, the expression of whole cultivation period is also a reference for us to know if our system can work as expectations.
So we tested five test stains individually (strain-Csy4, strain-Csy4-Q104A, strain-Csy4-Y176F, strain-Csy4-F155A and strain-Csy4-H29A) by microplate reader every two hours. The green lines in all the images represents strain-miniToe-only group keep stable. It means the miniToe structure fold well and lock the process of translation without Csy4. And the five test groups show different characteristics. In Fig.8-A, the group strain-Csy4 shows the same result with the first system. The switch turns off without IPTG (as the blue line shows). And the expression level is the highest among all the test groups which indicates the Csy4-WT has strongest capabilities (Fig.8-F). In the Fig.8-B, the tendency of fluorescence intensities by Csy4-Q104A is similar with Csy4-WT. And the expression level is lower than Csy4-WT. The Csy4-Y176F’s capabilities ranks the third. What is special is Csy4-H29A. The active site of Csy4 contains an essential histidine residue (H29) that functions as a general base during RNA strand scission. Mutation of H29 to alanine inactivates Csy4 without affecting substrate binding affinity or specificity. So Csy4-H29A is a dead-Csy4 which has high binding affinity but has lowest capabilities of cleavage as we can see in Fig.8-E. In summary, we put all the test groups together in Fig.8-F, the picture shows prediction by model match the result perfectly in Fig.9.
By all the experiments mentioned before, we proved that Csy4 mutants work as expectations successfully. The results are listed in the order: Csy4-WT>Csy4-Q104A>Csy4-Y176F>Csy4-F155A>Csy4-H29A. And the original sequences of Csy4 part has been submitted by other iGEM teams before, so this year we improved their work by enlarging Csy4 to a Csy4 family.
In summary
This year, we used point mutations to redesign four mutants on the basis of Csy4(BBa_K1062004) which are Csy4-Q104A(BBa_K2615004), Csy4-Y176F(BBa_K2615005), Csy4-F155A(BBa_K2615006) and Csy4-H29A(BBa_K2615007). The capabilities of cleavage and recognition are different for each Csy4 mutants, and we name them the Csy4 family. The combination of the Csy4 family members and the miniToe family members constitute a post-transcriptional regulatory toolkit for achieving different expression levels of target genes.
Csy4-Y176F, the third-strongest in the Csy4 family. It is designed in the same way as Csy4-Q104A, but with the 176th site changed from TAC(encoding Tyr) to TTT(encoding Phe). It can be seen from the experimental results that the expression of downstream genes regulated by Csy4-Y176F is correlated with the stepwise decline of Csy4-WT and Csy4-Q104A.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 377
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 93