Difference between revisions of "Part:BBa K2862014"

Line 12: Line 12:
  
  
<!-- Add more about the biology of this part here
 
 
===Usage===
 
===Usage===
 
SoxR combined with pSoxS acts as functional sensor of redox-cycling drugs and oxidative stress, making it a useful part for the creation of biosensors or devices activated by redox-cycling drugs, toxins, antibiotics, certain organic molecules, heavy metals, nitric oxide and hydrogen peroxide: all of which can exert oxidative stress on cells.
 
SoxR combined with pSoxS acts as functional sensor of redox-cycling drugs and oxidative stress, making it a useful part for the creation of biosensors or devices activated by redox-cycling drugs, toxins, antibiotics, certain organic molecules, heavy metals, nitric oxide and hydrogen peroxide: all of which can exert oxidative stress on cells.

Revision as of 06:21, 17 October 2018


SoxR from E. coli (new)

SoxR from E.coli (new)

SoxR is a redox-sensitive transcription factor providing transcriptional activation or repression downstream of the pSoxS promoter when oxidised, either directly by redox-cycling drugs or by oxidative stress. It is therefore inducible by various redox-cycling drugs, toxins, antibiotics, heavy metals, hydrogen peroxide and nitric oxide: providing various applications in the development of environmental and therapeutic devices. By coupling oxidation of redox-cycling species to an electrode, the 2018 Imperial College London iGEM team (PixCell) used SoxR to build electrogenetic devices where electrical inputs modulated gene expression.

This SoxR CDS was taken from X, and is codon optimised for E. coli. It forms part of the PixCell library of electrogenetic and redox-sensing parts.

This part has been designed to be fully modular, being compatible for BioBrick, BASIC and Golden Gate assembly.


Usage

SoxR combined with pSoxS acts as functional sensor of redox-cycling drugs and oxidative stress, making it a useful part for the creation of biosensors or devices activated by redox-cycling drugs, toxins, antibiotics, certain organic molecules, heavy metals, nitric oxide and hydrogen peroxide: all of which can exert oxidative stress on cells.

The 2018 Imperial College London iGEM project (PixCell) utilised SoxR in electrogenetic devices capable of activating gene expression in response to an electrical stimulus. This was achieved via oxidation and reduction of redox-mediators at an electrode. These systems provide programmable spatiotemporal control of gene expression with an inexpensive experimental set up.

The induction of this system by redox-cycling drugs makes it a particularly cheap system to use for chemical induction of gene expression, with the molecule PMS (phenazine methosulfate) being cheaper per reaction than several other common chemical inducers.

As part of the PixCell library, SoxR can be coupled with various different parts to tune the dose response of the system to suit the device being constructed. This library includes a mutant promoter where SoxR acts as a transcriptional repressor.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 49
    Illegal BsaI.rc site found at 532