Difference between revisions of "Part:BBa K2549035"

Line 2: Line 2:
 
<partinfo>BBa_K2549035 short</partinfo>
 
<partinfo>BBa_K2549035 short</partinfo>
  
This part is one of the response elements of our amplifier, also executing the combiner function. 8*ZF21.16 binding sites and 2*ZF43.8 binding sites ([[Part:BBa_K2549051]]) can bind to different zinc finger-based transcription activator ZF21.16-VP64 ([[Part:BBa_K2549023]]) and zinc finger-based repressor ZF43.8-KRAB ([[Part:BBa_K2446041]]), respectively, with high orthogonality. Minimal CMV ([[Part:BBa_K2549049]]) is a promotor providing very low basal expression and high maximal expression after induction. This part is designed to construct our NIMPLY logic gate and test our multiple binding sites amplifier model<ref>http://2018.igem.org/Team:Fudan/Model#Transcriptional_Amplifer</ref>.
+
This part is one of the response elements of our amplifier, also executing the combiner function. 8*ZF21.16 binding sites and 2*ZF43.8 binding sites ([[Part:BBa_K2549051]]) can bind to different zinc finger-based transcription activator ZF21.16-VP64 ([[Part:BBa_K2549023]]) and zinc finger-based repressor ZF43.8-KRAB ([[Part:BBa_K2446041]]), respectively, with high orthogonality. Minimal CMV ([[Part:BBa_K2549049]]) is a promotor providing very low basal expression and high maximal expression after induction. This part was designed to construct our NIMPLY logic gate and test our multiple binding sites amplifier model<ref>http://2018.igem.org/Team:Fudan/Model#Transcriptional_Amplifer</ref>.
  
 
<!-- -->
 
<!-- -->
Line 13: Line 13:
 
=====It works as we designed =====
 
=====It works as we designed =====
 
@@@@
 
@@@@
 +
 +
Different transcription factors interaction with multiple binding sites
 +
 +
Promotor operator numbers can have an impact on tuning output
  
 
=====synthetic promotor operators regulated by artificial zinc finger-based transcription factors=====
 
=====synthetic promotor operators regulated by artificial zinc finger-based transcription factors=====
Line 18: Line 22:
  
 
[[File:ZF2.jpg|none|540px|thumb|Khalil AS et al stated:''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']]
 
[[File:ZF2.jpg|none|540px|thumb|Khalil AS et al stated:''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']]
====Promotor operator numbers can have an impact on tuning output====
 
  
 
[[File:ZF3.jpg|none|540px|thumb|Khalil AS et al stated:''Tuning up output strength by increasing ZF operator number in synthetic promoter (sTF43-8).'']]
 
[[File:ZF3.jpg|none|540px|thumb|Khalil AS et al stated:''Tuning up output strength by increasing ZF operator number in synthetic promoter (sTF43-8).'']]
====different transcription factors interaction with multiple binding sites====
 
  
  

Revision as of 14:04, 12 October 2018

8*ZF21.16-minCMV-8*ZF43.8

This part is one of the response elements of our amplifier, also executing the combiner function. 8*ZF21.16 binding sites and 2*ZF43.8 binding sites (Part:BBa_K2549051) can bind to different zinc finger-based transcription activator ZF21.16-VP64 (Part:BBa_K2549023) and zinc finger-based repressor ZF43.8-KRAB (Part:BBa_K2446041), respectively, with high orthogonality. Minimal CMV (Part:BBa_K2549049) is a promotor providing very low basal expression and high maximal expression after induction. This part was designed to construct our NIMPLY logic gate and test our multiple binding sites amplifier model[1].

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Biology

It works as we designed

@@@@

Different transcription factors interaction with multiple binding sites

Promotor operator numbers can have an impact on tuning output

synthetic promotor operators regulated by artificial zinc finger-based transcription factors

Khalil AS et al have reported several synthetic promotor operators which can interact with artificial zinc finger-based transcription factors with high specificity and high orthogonality[2].

Khalil AS et al stated:sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.
Khalil AS et al stated:Tuning up output strength by increasing ZF operator number in synthetic promoter (sTF43-8).


References

  1. http://2018.igem.org/Team:Fudan/Model#Transcriptional_Amplifer
  2. A synthetic biology framework for programming eukaryotic transcription functions. Khalil AS, Lu TK, Bashor CJ, ..., Joung JK, Collins JJ. Cell, 2012 Aug;150(3):647-58 PMID: 22863014; DOI: 10.1016/j.cell.2012.05.045