Difference between revisions of "Part:BBa K2443038"
Keithaiken (Talk | contribs) |
Keithaiken (Talk | contribs) |
||
Line 16: | Line 16: | ||
<img src="https://static.igem.org/mediawiki/2017/9/92/Lethbridge_tRNApurification.png" width=50% height=50% /> | <img src="https://static.igem.org/mediawiki/2017/9/92/Lethbridge_tRNApurification.png" width=50% height=50% /> | ||
</html> | </html> | ||
+ | |||
<p><b>Figure 3 - Preliminary tRNA<sup>Phe</sup> Purification. </b>12% 8M urea PAGE run for 45 mins at 300 V. All concentrated fractions were phenol chloroform extracted, ethanol precipitated and re-suspended in 30 µL of ddH<sub>2</sub>O. Lanes are as follows: 1- tRNA fraction with 20 units of RNase H added; 2- concentrated tRNA fraction 20 units of RNase H added; 3- concentrated MS2 fraction 1 20 units of RNase H added; 4- concentrated MS2 fraction 2 20 units of RNase H added; 5- tRNA standard (76 nt). | <p><b>Figure 3 - Preliminary tRNA<sup>Phe</sup> Purification. </b>12% 8M urea PAGE run for 45 mins at 300 V. All concentrated fractions were phenol chloroform extracted, ethanol precipitated and re-suspended in 30 µL of ddH<sub>2</sub>O. Lanes are as follows: 1- tRNA fraction with 20 units of RNase H added; 2- concentrated tRNA fraction 20 units of RNase H added; 3- concentrated MS2 fraction 1 20 units of RNase H added; 4- concentrated MS2 fraction 2 20 units of RNase H added; 5- tRNA standard (76 nt). | ||
</p> | </p> | ||
− | + | <html> | |
− | https://static.igem.org/mediawiki/2017/9/92/Lethbridge_tRNApurification.png | + | <img src="https://static.igem.org/mediawiki/2017/9/92/Lethbridge_tRNApurification.png" width=50% height=50% /> |
+ | </html> | ||
<p><b>Figure 4 - Successful tRNA<sup>Phe</sup> Purification. </b>12% 8M urea PAGE run for 45 mins at 300 V. All fractions were phenol chloroform extracted, ethanol precipitated and re-suspended in 30 µL of ddH<sub>2</sub>O. Lanes are as follows - 1- MS2 fraction 25 units of RNase H added; 2- tRNA fraction 25 units of RNase H added; 3- MS2 fraction 50 units of RNase H added; 4- tRNA fraction 50 units of RNase H added; 5- MS2 fraction 100 units of RNase H added; 6- tRNA fraction 100 units of RNase H added; 7- MS2 fraction 10 units of RNase H added; 8- tRNA elution 10 units of RNase H added; 9- tRNA standard (76 nt). | <p><b>Figure 4 - Successful tRNA<sup>Phe</sup> Purification. </b>12% 8M urea PAGE run for 45 mins at 300 V. All fractions were phenol chloroform extracted, ethanol precipitated and re-suspended in 30 µL of ddH<sub>2</sub>O. Lanes are as follows - 1- MS2 fraction 25 units of RNase H added; 2- tRNA fraction 25 units of RNase H added; 3- MS2 fraction 50 units of RNase H added; 4- tRNA fraction 50 units of RNase H added; 5- MS2 fraction 100 units of RNase H added; 6- tRNA fraction 100 units of RNase H added; 7- MS2 fraction 10 units of RNase H added; 8- tRNA elution 10 units of RNase H added; 9- tRNA standard (76 nt). |
Revision as of 01:57, 2 November 2017
tRNAPhe-MS2
tRNAPhe-MS2 co-purification construct. Contains a T7 promoter -10 followed by tRNA Phe, two MS2 RNA aptamers and a double terminator. To be used in conjunction with BBa_K2109108.
tRNA Purification
Both BBa K2443038 and BBa_K2109108 were overexpressed individually in E. coli BL21-Gold (DE3) cells. Upon which time the cells were lysed, the lysate combined, and applied to a Nickel Sepharose affinity column. In order to cleave the RNA, 1 µM of DNA oligo was added to the column, as well as varying amounts of RNase H. Incubation times on the column with RNase H and DNA oligo varied from 2 hours (Figure 3) to 12 hours (Figure 4), and the amount of RNase H used varied from 10 units to 100 units (Figure 3 and 4). Based upon the varied conditions, a longer incubation time had the greatest effect on tRNA cleavage efficiency with units of RNase H being optimal between the range of 5-50. With these improvements from our initial attempt at tRNA cleavage we successfully purified tRNAPhe, as shown in Figure 4.
For more information on the design, see the "http://2017.igem.org/Team:Lethbridge/Design#anchor5" tRNA purification</a> section here.
Figure 3 - Preliminary tRNAPhe Purification. 12% 8M urea PAGE run for 45 mins at 300 V. All concentrated fractions were phenol chloroform extracted, ethanol precipitated and re-suspended in 30 µL of ddH2O. Lanes are as follows: 1- tRNA fraction with 20 units of RNase H added; 2- concentrated tRNA fraction 20 units of RNase H added; 3- concentrated MS2 fraction 1 20 units of RNase H added; 4- concentrated MS2 fraction 2 20 units of RNase H added; 5- tRNA standard (76 nt).
Figure 4 - Successful tRNAPhe Purification. 12% 8M urea PAGE run for 45 mins at 300 V. All fractions were phenol chloroform extracted, ethanol precipitated and re-suspended in 30 µL of ddH2O. Lanes are as follows - 1- MS2 fraction 25 units of RNase H added; 2- tRNA fraction 25 units of RNase H added; 3- MS2 fraction 50 units of RNase H added; 4- tRNA fraction 50 units of RNase H added; 5- MS2 fraction 100 units of RNase H added; 6- tRNA fraction 100 units of RNase H added; 7- MS2 fraction 10 units of RNase H added; 8- tRNA elution 10 units of RNase H added; 9- tRNA standard (76 nt).
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]