Difference between revisions of "Part:BBa K2398016"
Line 21: | Line 21: | ||
− | [[File:T--Heidelberg--Team_Heidelberg_2017_pampace1333.jpeg|thumb|center|Figure 3:Schematic representation of the PREDCEL method.] | + | [[File:T--Heidelberg--Team_Heidelberg_2017_pampace1333.jpeg|thumb|center|Figure 3:Schematic representation of the PREDCEL method.]] |
− | + | ||
− | + | ||
<h1>Results</h1> | <h1>Results</h1> | ||
In a first step, we wanted to validate our AP. Therefore, we added theophylline with a concentration of 100 µM to our inoculated culture and performed two rounds of PREDCEL. Afterwards, we determined the phage titers by plaque assays. Our theophylline treated culture displayed approximately two times higher phage titers than the non-treated control culture. | In a first step, we wanted to validate our AP. Therefore, we added theophylline with a concentration of 100 µM to our inoculated culture and performed two rounds of PREDCEL. Afterwards, we determined the phage titers by plaque assays. Our theophylline treated culture displayed approximately two times higher phage titers than the non-treated control culture. | ||
Line 39: | Line 39: | ||
respectively. Adding theophylline increases the geneIII expression | respectively. Adding theophylline increases the geneIII expression | ||
2-fold. Adding caffeine enhances the conversion of caffeine to | 2-fold. Adding caffeine enhances the conversion of caffeine to | ||
− | theophylline and thus increases the geneIII expression as well.] | + | theophylline and thus increases the geneIII expression as well.]] |
Line 47: | Line 47: | ||
exchange are indicated in red, without amino acid exchange in orange. | exchange are indicated in red, without amino acid exchange in orange. | ||
Single mutations with amino acid exchange are shown in yellow, and | Single mutations with amino acid exchange are shown in yellow, and | ||
− | without amino acid exchange in blue.] | + | without amino acid exchange in blue.]] |
Latest revision as of 00:52, 2 November 2017
Cytochrom P450 1A2 (CYP1A2)
This part consists of the Cytochrom P450 1A2 (CYP1A2), flanked by two homology regions for the usage due to the cloning standard of the iGEM Team Heidelberg 2017 (http://2017.igem.org/Team:Heidelberg/RFC). Figure one gives a short overview of our standard. Our BioBricks from the registry can easily be used for the assembly of blasmid with the standard (Fig.: 2).
Experiments with this Part
Testing CYP1A2`s activity
Before we could start to evolve the CYP1A2 we first checked whether the enzyme can be expressed in its functional tertiary structure in our E.coli strain. CYP1A2 requires a heme group as cofactor which coordinates iron ions, a fast test using sodium dithionite can be conducted to proof whether the CYP1A2 is properly folded. Thereby sodium dithionite acts as a reducing agent and can be used to quantitatively detect iron ions in aqueous solutions. When sodium dithionite is added to the cell lysate of E.coli cells expressing CYP1A2 and the corresponding chaperone protein HDJ-1 a color change can be detected even by the eye (Fig. 4). Further OD measurement at 550 nm will show a peak, indicating the reduction of iron ions by sodium dithionite [1].
Optimized PREDCEL Workflow
The used PREDCEL workflow in general is described in the PREDCEL protocol (http://2017.igem.org/Team:Heidelberg/Predcel). However, we had to conduct some adaptations for a successful PREDCEL run: Once the culture is grown to an OD600 of 0.6, the Mutagenesis Plasmid was activated by exchanging the initial medium containing glucose (repressing the MP) by medium containing arabinose. Then the culture is inoculated and incubated for three hours to propagate the phages before the supernatant containing the phages is transferred for the first time. After three rounds of passaging, the obtained phage supernatant is used to infect another E.coli strain, ensuring fast propagation of phages without selection pressure over night. This intermediate step prevents a phage washout and ensures a sufficient phage titer that is needed for the inoculation of the next PREDCEL culture. This procedure has to be repeated after each round until the evolution process is completed (Fig. 3). To get to know more about on how phage titers behaves under different conditions, have a closer look on our Modeled Phage Titers page(http://2017.igem.org/Team:Heidelberg/Model/Phage_Titer).
Results
In a first step, we wanted to validate our AP. Therefore, we added theophylline with a concentration of 100 µM to our inoculated culture and performed two rounds of PREDCEL. Afterwards, we determined the phage titers by plaque assays. Our theophylline treated culture displayed approximately two times higher phage titers than the non-treated control culture. Using the same experimental conditions, but replacing the theophylline treatment by a 300 µM caffeine treatment, we verified the functionality of CYP1A2 and thus of our SP. If caffeine is added to the culture CYP1A2 catalyzes the reaction from caffeine to theophylline. The resulting increase of the theophylline concentration further activates the riboswitch on the AP and phage propagation is stimulated (Fig.5). For the evolution of proteins via PREDCEL the addition of a Mutagenesis Plasmid (MP) is essential. For our cytochrome engineering approach we have chosen MP4, which induces a medium mutation rate (Badran et al., 2015). After six iterations of our optimized PREDCEL workflow, we performed plaque assays and sequenced single plaques. The sequenced plaques showed five recurrent mutations demonstrating that we are able to induce mutations with our experimental setup and that we are able to evolve enzymes (Fig.6).
References
[1] Kan, SB Jennifer and Lewis, Russell D and Chen, Kai and Arnold, Frances H (2016) Directed evolution of cytochrome c for carbon--silicon bond formation: Bringing silicon to life.Science 354, 1048-1051