Difference between revisions of "Part:BBa I746105"
(13 intermediate revisions by 2 users not shown) | |||
Line 18: | Line 18: | ||
Summary:In this contribution, we characterized this part in <i>S.aureus</i>. | Summary:In this contribution, we characterized this part in <i>S.aureus</i>. | ||
− | === | + | ===Characterization of P2-GFP composite part in <i>S.aureus</i>=== |
− | To characterize whether this P2-GFP part can be function in the Gram-positive strain, we test this composite part directly in S. aureus. The P2-GFP composite fragment was cut by restriction endonuclease from the BBa_I746105 part, then the fragment was inserted at the same restriction site of the shuttle vector pLI50 (Fig. 1A) by ligation, the result plasmid named pLI50-P2-GFP (Fig. 1B). The constructed pLI50-P2-GFP was then verified by restriction endonuclease digestion and sequencing. | + | To characterize whether this P2-GFP part can be function in the Gram-positive strain, we test this composite part directly in <i>S.aureus</i>. The P2-GFP composite fragment was cut by restriction endonuclease from the BBa_I746105 part, then the fragment was inserted at the same restriction site of the shuttle vector pLI50 (Fig. 1A) by ligation, the result plasmid named pLI50-P2-GFP (Fig. 1B). The constructed pLI50-P2-GFP was then verified by restriction endonuclease digestion and sequencing. |
− | [[file:Xyz2 | + | [[file:Xyz2.jpeg|500px|thumb|left]] |
− | + | ||
− | + | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Fig. 1 Map of pLI50 (A) and pLI50-P2-GFP (B). | ||
+ | |||
+ | |||
+ | After that the pLI50-P2-GFP was transformed into the <i>S.aureus</i> strain RN4220. Strong green fluorescence was observed from RN4220::pLI50-P2-GFP strain colonies (Fig. 2), while not any fluorescence was observed from RN4220::pLI50 strain on plate (Fig. 2). This data suggest that the P2-GFP composite part can be functional in <i>S.aureus</i> when the Agr system is present. | ||
[[file:RN4220.jpeg|500px|thumb|left]] | [[file:RN4220.jpeg|500px|thumb|left]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Fig. 2 White light (A) or fluorescence (B) of RN4220::pLI50-P2-GFP strain on plate. | ||
+ | |||
+ | |||
+ | To explore the dynamics of the autoinduction of the synthetic AIP system, we track the green fluorescence intensity of the RN4220::pLI50-P2-GFP strain along time using the Microplate Reader. As shown in the Fig. 3, we found that the expression of GFP increased quickly and steadily, and finally reached a plateau. This result is consistent with the autoinduction prediction of the composite part. | ||
+ | |||
+ | [[file:T--TMMU-China--RN4220yingguang.jpeg|500px|thumb|left]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Fig. 3 Fluorescence curve along time | ||
+ | |||
Latest revision as of 05:10, 1 November 2017
GFP with agr P2 promoter
This is composed of a promoter and a GFP reporter gene. This can produce green fluorescence and in theory the strength of the green flourence is much stronger when there is phosphorylated AgrA in the cell. This is used to test the basal activity of agr P2 promoter.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 769
Contribution:TMMU-China 2017
Author:Yizhen Xu
Summary:In this contribution, we characterized this part in S.aureus.
Characterization of P2-GFP composite part in S.aureus
To characterize whether this P2-GFP part can be function in the Gram-positive strain, we test this composite part directly in S.aureus. The P2-GFP composite fragment was cut by restriction endonuclease from the BBa_I746105 part, then the fragment was inserted at the same restriction site of the shuttle vector pLI50 (Fig. 1A) by ligation, the result plasmid named pLI50-P2-GFP (Fig. 1B). The constructed pLI50-P2-GFP was then verified by restriction endonuclease digestion and sequencing.
Fig. 1 Map of pLI50 (A) and pLI50-P2-GFP (B).
After that the pLI50-P2-GFP was transformed into the S.aureus strain RN4220. Strong green fluorescence was observed from RN4220::pLI50-P2-GFP strain colonies (Fig. 2), while not any fluorescence was observed from RN4220::pLI50 strain on plate (Fig. 2). This data suggest that the P2-GFP composite part can be functional in S.aureus when the Agr system is present.
Fig. 2 White light (A) or fluorescence (B) of RN4220::pLI50-P2-GFP strain on plate.
To explore the dynamics of the autoinduction of the synthetic AIP system, we track the green fluorescence intensity of the RN4220::pLI50-P2-GFP strain along time using the Microplate Reader. As shown in the Fig. 3, we found that the expression of GFP increased quickly and steadily, and finally reached a plateau. This result is consistent with the autoinduction prediction of the composite part.
Fig. 3 Fluorescence curve along time