Difference between revisions of "Part:BBa KK2328001"

(Created page with "__NOTOC__ <partinfo>BBa_K2328000 short</partinfo> <!-- Add more about the biology of this part here ===Usage and Biology=== <!-- --> <span class='h3bb'>Sequence and Features...")
 
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
<partinfo>BBa_K2328000 short</partinfo>
+
<partinfo>BBa_K2328001 short</partinfo>
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
Line 7: Line 7:
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
<partinfo>BBa_K2328000 SequenceAndFeatures</partinfo>
+
<partinfo>BBa_K2328001 SequenceAndFeatures</partinfo>
  
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  
 
===Functional Parameters===
 
===Functional Parameters===
<partinfo>BBa_K2328000 parameters</partinfo>
+
<partinfo>BBa_K2328001 parameters</partinfo>
 
<!-- -->
 
<!-- -->
  

Revision as of 10:56, 26 October 2017

smURFP II codon-optimized for intestinal bacteria (without terminator codon TAA)

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 279
  • 1000
    COMPATIBLE WITH RFC[1000]


Usage

smURFP (small ultra-red FP) is the most important part in our group. It is desirable for our in vivo imaging because with it molecule less light is scattered, absorbed, or re-emitted by endogenous biomolecules compared with cyan, green, yellow and orange FPs. smURFP can covalently attaches a biliverdin(BV) chromophore without a lyase, and has 642/670 nm excitation - emission peaks, a large extinction coefficient and quantum yield, and photostability comparable to that of eGFP.

Biology

In order to fluoresce, smURFP must be combined with biliverdin (BV) .We have two solutions to make in vivo imaging come true. The first one is co-expression system and the other one is surface display system. To construct the co-expression system, the gene of fluorescent protein---smURFP and the gene of the precursor of biliverdin---HO-1 should be connected to the same expression vector and then transferred to our target bacteria. The precursor of biliverdin will be transferred to biliverdin through a series of conversion, and then fluorescent protein will combine with biliverdin directly in our target bacteria and glow in the bacteria. To construct the surface display system, the gene of fluorescent protein---smURFP and the gene of the anchoring protein should be connected to the same expression vector. After the recombinant plasmid is transferred to the target bacteria, the fluorescent protein and anchoring protein will express at the same time and become fusion protein, and then the fluorescent protein will be carried to the cell surface by anchoring protein. With the added biliverdin, fluorescent protein will combine with biliverdin and glow on the cell surface.

Reference

[1] Rodriguez EA,Tran GN , Gross LA, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein .[J].NATURE METHODS,2016:763-769.