Difference between revisions of "Part:BBa I15008"
Jiangzhongyi (Talk | contribs) (→New infomation) |
Jiangzhongyi (Talk | contribs) (→Results) |
||
Line 36: | Line 36: | ||
===Results=== | ===Results=== | ||
We use this part to prduce Biliverdin (BV) in E.coli BL21. For the subsequent experiments, we use our codon-optimized gene to express HO-1 in facultative anarobes. | We use this part to prduce Biliverdin (BV) in E.coli BL21. For the subsequent experiments, we use our codon-optimized gene to express HO-1 in facultative anarobes. | ||
+ | |||
+ | <p style="text-align: center;"> | ||
+ | https://static.igem.org/mediawiki/parts/3/36/BV_production.png<br> | ||
+ | '''Figure 1.''' The result after induction, the upper one is the control group, and the inferior one is the experimental group.<br> | ||
+ | </p> | ||
===Reference=== | ===Reference=== |
Revision as of 13:18, 25 October 2017
heme oxygenase (ho1) from Synechocystis
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Description
One of two requisite genes required for the biosynthesis of phycocyanobilin from heme.
Usage and Biology
ho1 oxidizes the heme group using a ferredoxin cofactor, generating biliverdin IXalpha and representing the first of two steps in phycocyanobilin (PCB) biosynthesis. PCB associates with Cph8, creating a light responsive protein complex. Functions in tandem with BBa_I15009 for PCB biosynthesis. PCB then associates with Part:BBa_I15010, a light responsive Cph8/EnvZ fusion protein.
Additional Supplements
The infomation below is updated by TJU_China of iGEM 2017.
New infomation
We exchange the position of sequence window and the text.
The original part has a barcode after coding sequence. So we submit a new part Part:BBa_K2328062 (without the barcode) for our composite parts. We will upload the data and infomation in all pages related to HO-1.
In addition, in order to make this part express better in hosts of our project (several intestinal bacteria), we optimize the codons of the part and submit another two new parts: Part:BBa_K2328003 for E.coli, EHEC, Citrobacter rodentium, Lactococcus Iactis, Bacaeroides fragilis, Enterococcus faecalis and Clostridium difficile and Part:BBa_K2328004 for Bifidobacterium longum. We do codon optimization for two obligate anaerobes just want to comfirm that this gene cannot work at all in obligate anarobes, which means HO-1 gene doesn't make any sense in these two bacteria, at least for now.
New usage
A novel far-red fluorescent protein evolved from APCα from Trichodesmium erythraeum, called smURFP, can covalently attaches a biliverdin (BV) chromophore without a lyase, unlike its precursor APC which should use an auxiliary protein known as a lyase to incorporate phycocyanobilin. In addition, phycocyanobilin (PCB) is synthesized from BV, and PCB do not exists in mammals but BV does. So BV is better as a chromophore in some way, along with smURFP.
In our projext, we use HO-1 gene for two task: one is to produce BV in E.coli BL21, the other is to be a element in co-expression system (with fluorescent protein smURFP).
Results
We use this part to prduce Biliverdin (BV) in E.coli BL21. For the subsequent experiments, we use our codon-optimized gene to express HO-1 in facultative anarobes.
Figure 1. The result after induction, the upper one is the control group, and the inferior one is the experimental group.
Reference
[1] Rodriguez EA, Tran GN, Gross LA, Crisp JL, Shu X, Lin JY, Tsien RY. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat Methods. 2016 Sep;13(9):763-9.
[2] HO-1 I (without a barcode) Part:BBa_K2328062
[3] HO-1 II codon-optimized for intestinal bacteria Part:BBa_K2328003
[4] HO-1 III codon-optimized for Bifidobacterium longum Part:BBa_K2328004