Difference between revisions of "Part:BBa K2116008"
(4 intermediate revisions by the same user not shown) | |||
Line 28: | Line 28: | ||
<h1> Biology and Usage </h1> | <h1> Biology and Usage </h1> | ||
− | [[File:T-- | + | [[File:T--ETH_Zurich--p28_291116.png|500px|right|]] |
+ | |||
<p>Biological logic gates are useful for creating higher order genetic circuits. This AND gate has one esabox placed as a roadblock | <p>Biological logic gates are useful for creating higher order genetic circuits. This AND gate has one esabox placed as a roadblock | ||
after PnorV transcription start site. It is regulated by a transcriptional | after PnorV transcription start site. It is regulated by a transcriptional |
Latest revision as of 09:00, 29 November 2016
AND gate regulated by norR and esaR (three esaboxes,15bp)
We constructed a selection of AND gates responding to nitric oxide (NO) and 3OC6HSL (AHL). They were designed using the previously
described NorV promoter Part:BBa_K1153000. This Promoter (from here on refered to as PnorV) is the native promoter controlling
the nitric oxide reduction operon (norRVW) in E. coli [1]. Its transcriptional regulator, NorR, can bind to nitric
oxide and activate gene expression. Using the distinct properties of esaboxes, PnorV was designed to also be responsive
to AHL, giving it an AND gate behaviour. An esabox is an 18bp sequence to which the transcriptional regulator EsaR Part:BBa_K2116001
can bind. Transcription can be initiated by the specific AHL EsaR responds to [N-(3-oxo-hexanoyl)-L-homoserine lactone].
By placing one, two or three esaboxes at different positions in the vicinity of PnorV, different specificities for AHL and
NO were reached. We created and characterized a collection of these kind of AND gates:
- Part:BBa_K2116004
- Part:BBa_K2116005
- Part:BBa_K2116006
- Part:BBa_K2116012
- Part:BBa_K2116013
- Part:BBa_K2116014
- Part:BBa_K2116007
- Part:BBa_K2116008
- Part:BBa_K2116068
- Part:BBa_K2116015
Biology and Usage
Biological logic gates are useful for creating higher order genetic circuits. This AND gate has one esabox placed as a roadblock after PnorV transcription start site. It is regulated by a transcriptional activator, NorR, and a transcriptional repressor, EsaR. Transcription can be initiated by NO binding to NorR. EsaR sits on the esabox and blocks RNA polymerase from advancing. As soon as 3OC6HSL binds EsaR it is released and transcription can continue. This design makes the AND gate modular. The esabox/EsaR system can be exchanged for another transcriptional repression system to create another AND gate.
Characterization
When characterizing our parts collection we initially confirmed functionality. Below you can see a graph depicting AND gate behaviour of this biobrick.
The AND gate behaviour shown in Figure 1 can be explained bye the placing of three esaboxes after PnorV. This seems to be enough to reach sufficient balance between repression and derepression. An improvement could be achieved by either increasing the number of esaboxes, their placement or by decreasing the amount of EsaR production. We followed all these steps, and recommend you have a look at our favourite AND gate Part:BBa_K2116011, where an improvement compared to this part was shown.
Two of our functional AND gates were compared.
References:
- [1] Gardner, A. M. "Regulation Of The Nitric Oxide Reduction Operon (Norrvw) In Escherichia Coli. ROLE OF Norr AND Sigma 54 IN THE NITRIC OXIDE STRESS RESPONSE". Journal of Biological Chemistry 278.12 (2003): 10081-10086.
- [2] Shong, Jasmine and Cynthia H. Collins. "Engineering The Esar Promoter For Tunable Quorum Sensing-Dependent Gene Expression". ACS Synth. Biol. 2.10 (2013): 568-575.
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Sequence and Features