Difference between revisions of "Part:BBa K2066117"
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K2066117 short</partinfo> | <partinfo>BBa_K2066117 short</partinfo> | ||
− | This part takes the synthetic | + | This part takes the synthetic enhancer circuit with a two TetO binding cassette as well as the promoter and coding region of NRII from the helper plasmid of Amit et. al. 2011 circuits and puts it onto a single BioBrick backbone flanked by the UNS regions. This part allows for a three step output response due to the two TetO binding cassette in the spacer region between the enhancer and promoter. Combining the NRII and synthetic enhancer reduces metabolic strain, decouples the system from LacI/IPTG dependence, and allows for an ease of cloning due to the UNS sequences. The number of filled TetO sites influences the rigidity and the thermodynamics of the looping. |
+ | This part should be transformed with Bba_K2066022 to get constitutive expression of TetR repressor and allow for the circuit to output a 3 step multimodal response. | ||
− | + | Source: The enhancer, tet cassette (55as), glnAp2 synthetic promoter, NRI coding region, and mCherry coding region sequences were derived from Amit, R., Garcia, H. G., Phillips, R. & Fraser, S. E. Building enhancers from the ground up: a synthetic biology approach. Cell146, 105–118 (2011). The NRII2302 coding region and the promoter that it is controlled by is derived from the helper plasmid pACT tet from Amit et. al 2011. The UNS sequences at the ends of the insert are derived from Torella, J. P., Boehm, C. R., Lienert, F., Chen, J. H., Way, J. C., & Silver, P. A. (2013). Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic acids research, gkt860. A huge thanks to all the researchers involved in its original creation! | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== |
Latest revision as of 03:35, 29 October 2016
Synthetic Enhancer: 2x TetO Binding Cassette + NRII on UNS
This part takes the synthetic enhancer circuit with a two TetO binding cassette as well as the promoter and coding region of NRII from the helper plasmid of Amit et. al. 2011 circuits and puts it onto a single BioBrick backbone flanked by the UNS regions. This part allows for a three step output response due to the two TetO binding cassette in the spacer region between the enhancer and promoter. Combining the NRII and synthetic enhancer reduces metabolic strain, decouples the system from LacI/IPTG dependence, and allows for an ease of cloning due to the UNS sequences. The number of filled TetO sites influences the rigidity and the thermodynamics of the looping. This part should be transformed with Bba_K2066022 to get constitutive expression of TetR repressor and allow for the circuit to output a 3 step multimodal response.
Source: The enhancer, tet cassette (55as), glnAp2 synthetic promoter, NRI coding region, and mCherry coding region sequences were derived from Amit, R., Garcia, H. G., Phillips, R. & Fraser, S. E. Building enhancers from the ground up: a synthetic biology approach. Cell146, 105–118 (2011). The NRII2302 coding region and the promoter that it is controlled by is derived from the helper plasmid pACT tet from Amit et. al 2011. The UNS sequences at the ends of the insert are derived from Torella, J. P., Boehm, C. R., Lienert, F., Chen, J. H., Way, J. C., & Silver, P. A. (2013). Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic acids research, gkt860. A huge thanks to all the researchers involved in its original creation!
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 111
Illegal NotI site found at 3712 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 890
- 1000COMPATIBLE WITH RFC[1000]