Difference between revisions of "Part:BBa K2047013:Design"
Line 1: | Line 1: | ||
+ | _NOTOC__ | ||
+ | <partinfo>BBa_K2047001 short</partinfo> | ||
− | + | <partinfo>BBa_K2047001 SequenceAndFeatures</partinfo> | |
− | <partinfo> | + | |
− | + | ||
− | + | ||
===Design Notes=== | ===Design Notes=== | ||
− | + | none | |
+ | When stem loops inserted in the 3’ end of the upstream gene, it protects its mRNA against the cleavage of exonuclease, increasing the ratio of abundance of the first gene product relative to that of the second gene product. Furthermore, the lower free energy of stem loops are, the more stable the secondary transcripts of the upstream are, tuning the expression of multiple genes. We designed a series of stem loops with different free energy and measured it by fluorescence reporter system. | ||
+ | ===Source=== | ||
− | + | Inspired by Xu’s work and based on keasling’s work, we designed a series of stem loops with different free energy for further use as basic regulatory parts. | |
− | + | ||
− | + | ||
===References=== | ===References=== | ||
+ | <p>[1]. Pfleger, B.F., et al., Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol, 2006. 24(8): p. 1027-32.<br>[2]. Xu, C., et al., Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat Commun, 2015. 6: p. 6900.<br>[3]. Smolke, C.D. and J.D. Keasling, Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng, 2002. 80(7): p. 762-76.</p> |
Revision as of 07:18, 22 October 2016
_NOTOC__ Fluorescent reporter system with stem-loop, GFP_Stem-loop with free energy of -25.6 kcal/mol
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 764
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 644
Design Notes
none When stem loops inserted in the 3’ end of the upstream gene, it protects its mRNA against the cleavage of exonuclease, increasing the ratio of abundance of the first gene product relative to that of the second gene product. Furthermore, the lower free energy of stem loops are, the more stable the secondary transcripts of the upstream are, tuning the expression of multiple genes. We designed a series of stem loops with different free energy and measured it by fluorescence reporter system.
Source
Inspired by Xu’s work and based on keasling’s work, we designed a series of stem loops with different free energy for further use as basic regulatory parts.
References
[1]. Pfleger, B.F., et al., Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol, 2006. 24(8): p. 1027-32.
[2]. Xu, C., et al., Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat Commun, 2015. 6: p. 6900.
[3]. Smolke, C.D. and J.D. Keasling, Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng, 2002. 80(7): p. 762-76.