Difference between revisions of "Part:BBa K2114009"

(Characterization)
Line 13: Line 13:
  
 
===Characterization===
 
===Characterization===
I) Surface localization
 
  
 +
<h4>I) Verification of surface localization by flow cytometry</h4>
  
 
[[File:IG16_Freiburg_Alexa_FACS_BBa_K2114009.png|350px|thumb|left|alt text]]
 
[[File:IG16_Freiburg_Alexa_FACS_BBa_K2114009.png|350px|thumb|left|alt text]]
Line 23: Line 23:
 
<br><br><br>
 
<br><br><br>
 
<br><br><br>
 
<br><br><br>
II) GFP-binding
+
 
 +
<h4>II) Binding to GFP</h4>
  
 
[[File:iG16_Freiburg_BBa_K2114009 GFP staining.png|350px|thumb|left|alt text]]
 
[[File:iG16_Freiburg_BBa_K2114009 GFP staining.png|350px|thumb|left|alt text]]

Revision as of 22:30, 19 October 2016


aGFPnano_HA_aHelix_cotG

N-terminal fusion of anti-GFP nanobody to spore crust gene cotG by a alpha helical linker.


Usage and Biology

Figure 1: Schematic representation of the resulting fusion protein.

This part includes the anti-GFP nanobody [1] fused by an alpha helical linker [2] to the B. subtilis spore crust gene cotG in order to be displayed on the spore surface. The hemagglutinin epitope tag was included in the fusion construct for convenient detection by specific anti-HA antibodies. The cotG gene was amplified from the genome of B. subtilis and the anti-GFP nanobody was amplified from an expression plasmid. The HA tag and the alpha helical linker were introduced by primer extensions. Both PCR fragments were assembled by Gibson cloning into pSB1C3. The fusion construct can released by XbaI and PstI and cloned alongside with an appropriate promoter into an integration vector for B. subtilis by 3A assembly [3].


Characterization

I) Verification of surface localization by flow cytometry

alt text

The spores of B. subtilis expressing the part BBa_K2114009 were purified by lysozyme treatment to lyse remaining vegetative cells and stained with anti-HA antibodies conjugated to Alexa Fluor® 647 (Cell Signaling Technology®). The antibody could only access surface-localized HA epitopes of the expressed fusion genes and could confirm the successful display of the heterologous protein on the surface of the modified spores while the wild type spores did not exhibit increase in the fluorescence.










II) Binding to GFP

alt text




















References

1. Kubala, M. H., Kovtun, O., Alexandrov, K. & Collins, B. M. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein Sci. 19, 2389–2401 (2010).
2. Hinc, K., Iwanicki, A. & Obuchowski, M. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb. Cell Fact. 12, 22 (2013).
3. Radeck, J. et al. The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J. Biol. Eng. 7, 29 (2013).


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]