Difference between revisions of "Part:BBa K1998010"
SWinchester (Talk | contribs) |
|||
Line 13: | Line 13: | ||
===Overview=== | ===Overview=== | ||
− | This part is composed of the | + | This part is composed of the <i>hydG</i> gene. All organisms with [Fe] hydrogenase and sequenced genomes contain homologues of <i>hydE, hydF</i>, and <i>hydG</i>. Within several prokaryotic genomes <i>hydE, hydF</i>, and <i>hydG</i> are found in putative operons with [Fe] hydrogenase structural genes. |
<br><br> | <br><br> | ||
<html><center><img src="https://static.igem.org/mediawiki/2016/8/81/T--Macquarie_Australia--HydrogenProduction.png" alt="HydrogenProduction" height="50%"width="75%"></center></html> | <html><center><img src="https://static.igem.org/mediawiki/2016/8/81/T--Macquarie_Australia--HydrogenProduction.png" alt="HydrogenProduction" height="50%"width="75%"></center></html> | ||
===Biology & Literature=== | ===Biology & Literature=== | ||
− | + | <i>hydG</i> is a radical S-adenosyl methionine (SAM) enzyme which catalyzes formation of a CO- and CN−-bound iron precursor to the H cluster, the cofactor on which [FeFe] hydrogenases are dependent on [1]. <i>hydG</i> breaks up the substrate tyrosine to yield both CO- and CN—ligands which act as precorsors during H-cluster assembly. It has been suggested that <i>hydG</i> cleaves the Cα–Cβ bond of tyrosine and p-cresol and dehydroglycine are formed as by-products [2]. <i>hydE</i> and <i>hydF</i> are maturases also required for the assembly of an active hydrogenase [3]. The binding site in <i>hydG</i> can accommodate either a [5Fe-5S] or a [4Fe-5S] cluster [4]. | |
===Protein information=== | ===Protein information=== | ||
− | + | <i>hydG</i><br> | |
Mass: 63.74kDa<br> | Mass: 63.74kDa<br> | ||
Sequence: <br> | Sequence: <br> | ||
Line 35: | Line 35: | ||
===References=== | ===References=== | ||
− | [1] Dinis P, Suess D, Fox S, Harmer J, Driesener R, De La Paz L et al. X-ray crystallographic and EPR spectroscopic analysis of | + | [1] Dinis P, Suess D, Fox S, Harmer J, Driesener R, De La Paz L et al. X-ray crystallographic and EPR spectroscopic analysis of <i>hydG</i>, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proceedings of the National Academy of Sciences. 2015;112(5):1362-1367. |
<br><br> | <br><br> | ||
− | [2] Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps J, Fontecave M. The role of the maturase | + | [2] Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps J, Fontecave M. The role of the maturase <i>hydG</i> in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Letters. 2009;583(3):506-511. |
<br><br> | <br><br> | ||
[3] Posewitz M, King P, Smolinski S, Zhang L, Seibert M, Ghirardi M. Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase. Journal of Biological Chemistry. 2004;279(24):25711-25720. | [3] Posewitz M, King P, Smolinski S, Zhang L, Seibert M, Ghirardi M. Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase. Journal of Biological Chemistry. 2004;279(24):25711-25720. | ||
<br><br> | <br><br> | ||
− | [4] Driesener R, Duffus B, Shepard E, Bruzas I, Duschene K, Coleman N et al. Biochemical and Kinetic Characterization of Radical S -Adenosyl- l -methionine Enzyme | + | [4] Driesener R, Duffus B, Shepard E, Bruzas I, Duschene K, Coleman N et al. Biochemical and Kinetic Characterization of Radical S -Adenosyl- l -methionine Enzyme <i>hydG</i>. Biochemistry. 2013;52(48):8696-8707 |
Revision as of 19:49, 19 October 2016
HydG
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Overview
This part is composed of the hydG gene. All organisms with [Fe] hydrogenase and sequenced genomes contain homologues of hydE, hydF, and hydG. Within several prokaryotic genomes hydE, hydF, and hydG are found in putative operons with [Fe] hydrogenase structural genes.
Biology & Literature
hydG is a radical S-adenosyl methionine (SAM) enzyme which catalyzes formation of a CO- and CN−-bound iron precursor to the H cluster, the cofactor on which [FeFe] hydrogenases are dependent on [1]. hydG breaks up the substrate tyrosine to yield both CO- and CN—ligands which act as precorsors during H-cluster assembly. It has been suggested that hydG cleaves the Cα–Cβ bond of tyrosine and p-cresol and dehydroglycine are formed as by-products [2]. hydE and hydF are maturases also required for the assembly of an active hydrogenase [3]. The binding site in hydG can accommodate either a [5Fe-5S] or a [4Fe-5S] cluster [4].
Protein information
hydG
Mass: 63.74kDa
Sequence:
MSVPLQCNAGRLLAGQRPCGVRARLNRRVCVPVTAHGKASATREYAGDFLPGTTISHAWSVERETHHRYRNPAEWINEAA
IHKALETSKADAQDAGRVREILAKAKEKAFVTEHAPVNAESKSEFVQGLTLEECATLINVDSNNVELMNEIFDTALAIKE
RIYGNRVVLFAPLYIANHCMNTCTYCAFRSANKGMERSILTDDDLREEVAALQRQGHRRILALTGEHPKYTFDNFLHAVN
VIASVKTEPEGSIRRINVEIPPLSVSDMRRLKNTDSVGTFVLFQETYHRDTFKVMHPSGPKSDFDFRVLTQDRAMRAGLD
DVGIGALFGLYDYRYEVCAMLMHSEHLEREYNAGPHTISVPRMRPADGSELSIAPPYPVNDADFMKLVAVLRIAVPYTGM
ILSTRESPEMRSALLKCGMSQMSAGSRTDVGAYHKDHTLSTEANLSKLAGQFTLQDERPTNEIVKWLMEEGYVPSWCTAC
YRQGRTGEDFMNICKAGDIHDFCHPNSLLTLQEYLMDYADPDLRKKGEQVIAREMGPDASEPLSAQSRKRLERKMKQVLE
GEHDVYL
References
[1] Dinis P, Suess D, Fox S, Harmer J, Driesener R, De La Paz L et al. X-ray crystallographic and EPR spectroscopic analysis of hydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proceedings of the National Academy of Sciences. 2015;112(5):1362-1367.
[2] Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps J, Fontecave M. The role of the maturase hydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Letters. 2009;583(3):506-511.
[3] Posewitz M, King P, Smolinski S, Zhang L, Seibert M, Ghirardi M. Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase. Journal of Biological Chemistry. 2004;279(24):25711-25720.
[4] Driesener R, Duffus B, Shepard E, Bruzas I, Duschene K, Coleman N et al. Biochemical and Kinetic Characterization of Radical S -Adenosyl- l -methionine Enzyme hydG. Biochemistry. 2013;52(48):8696-8707