Difference between revisions of "Part:BBa K2086001"

(Biology and Our Application)
(Biology and Our Application)
Line 20: Line 20:
 
[[Image:T--UNebraska-Lincoln--Biosynthesis.gif|450px|thumb|right|'''Figure 1:''' The serine biosynthesis pathway. Provided by: EcoCyc, a member of the BioCyc database collection http://ecocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=SERSYN-PWY&show-citations=NIL]]
 
[[Image:T--UNebraska-Lincoln--Biosynthesis.gif|450px|thumb|right|'''Figure 1:''' The serine biosynthesis pathway. Provided by: EcoCyc, a member of the BioCyc database collection http://ecocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=SERSYN-PWY&show-citations=NIL]]
 
Serine is an amino acid produced in <i>E. coli</i> K12 through the metabolic pathway shown in <b>Figure 1</b>. The SerA gene codes for D-3-Phosphoglycerate Dehydrogenase, the enzyme responsible for catalyzing the committed step of serine biosynthesis. Without SerA, <i>E. coli</i> are unable to grow without sufficient supplementation of other amino acids [1].  
 
Serine is an amino acid produced in <i>E. coli</i> K12 through the metabolic pathway shown in <b>Figure 1</b>. The SerA gene codes for D-3-Phosphoglycerate Dehydrogenase, the enzyme responsible for catalyzing the committed step of serine biosynthesis. Without SerA, <i>E. coli</i> are unable to grow without sufficient supplementation of other amino acids [1].  
<p>Taking advantage of the bacteria's dependence on serine, we can create a safety kill switch by controlling the production of the amino acid.</p>
+
<p>Taking advantage of the bacteria's dependence on serine, we planned to create a safety kill switch by controlling the production of the amino acid. By obtaining an auxotrophic strain, missing the SerA strain (JW2880 http://cgsc.biology.yale.edu/Strain.php?ID=108515) we were able to create a complement SerA plasmid to rescue the strain when grown in media without supplementary amino acids. </p>
  
 
[1]. PAULA D. RAVNIKAR AND RONALD L. SOMERVILLE: Genetic Characterization of a Highly Efficient Alternate Pathway of
 
[1]. PAULA D. RAVNIKAR AND RONALD L. SOMERVILLE: Genetic Characterization of a Highly Efficient Alternate Pathway of

Revision as of 21:39, 16 October 2016


Serine Repeat Antigen (SerA)

The E. coli serA gene encodes the D-3-phosphoglycerate dehydrogenase, which catalyzes the first committed step in the biosynthesis of serine. Serine is an essential amino acid for E. coli growth in minimal medium. Deletion of the serA gene leads to a serine auxotroph, which can be rescued either by the expression of a protein with the same catalytic activity as SerA or by the addition of serine in the growth media.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    INCOMPATIBLE WITH RFC[21]
    Unknown
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Biology and Our Application

Figure 1: The serine biosynthesis pathway. Provided by: EcoCyc, a member of the BioCyc database collection http://ecocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=SERSYN-PWY&show-citations=NIL

Serine is an amino acid produced in E. coli K12 through the metabolic pathway shown in Figure 1. The SerA gene codes for D-3-Phosphoglycerate Dehydrogenase, the enzyme responsible for catalyzing the committed step of serine biosynthesis. Without SerA, E. coli are unable to grow without sufficient supplementation of other amino acids [1].

Taking advantage of the bacteria's dependence on serine, we planned to create a safety kill switch by controlling the production of the amino acid. By obtaining an auxotrophic strain, missing the SerA strain (JW2880 http://cgsc.biology.yale.edu/Strain.php?ID=108515) we were able to create a complement SerA plasmid to rescue the strain when grown in media without supplementary amino acids.

[1]. PAULA D. RAVNIKAR AND RONALD L. SOMERVILLE: Genetic Characterization of a Highly Efficient Alternate Pathway of Serine Biosynthesis in Escherichia coli. http://jb.asm.org/content/169/6/2611.full.pdf