Difference between revisions of "Part:BBa K1974013"

Line 3: Line 3:
  
 
<h1>'''Introduction:'''</h1>
 
<h1>'''Introduction:'''</h1>
[[File:NCTU_O.png|800px|thumb|center|'''Figure 1.'''T7 promoter+RBS+OAIP+linker+His-tag+terminator  ]]
+
[[File:2016_NCTU_FORMOSA_O_.png|800px|thumb|center|'''Figure 1.'''T7 promoter+RBS+OAIP+linker+His-tag+terminator  ]]
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;By ligating the IPTG induced promoter T7 (BBa_ I712074), strong ribosome binding site (BBa_B0034), OAIP, linker, and the 6xHistag (BBa_ K1223006), we are able to express OAIP, the toxin by IPTG induction
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;By ligating the IPTG induced promoter T7 (BBa_ I712074), strong ribosome binding site (BBa_B0034), OAIP, linker, and the 6xHistag (BBa_ K1223006), we are able to express OAIP, the toxin by IPTG induction
 
.
 
.

Revision as of 16:20, 16 October 2016

T7Promoter+RBS+Sf1a+linker+6X His-Tag

Introduction:

Figure 1.T7 promoter+RBS+OAIP+linker+His-tag+terminator

      By ligating the IPTG induced promoter T7 (BBa_ I712074), strong ribosome binding site (BBa_B0034), OAIP, linker, and the 6xHistag (BBa_ K1223006), we are able to express OAIP, the toxin by IPTG induction .
      This year we create a revolutionary system that integrates biological pesticides, automatic detector, sprinkler, and IoT. We made a database that contains most of the spider toxins and selected the target toxins by programming. Orally Active Insecticidal Peptide is coded for the venom of a spider, Selenotypus plumipes. It is under the control of the strong T7 promoter. A 6xHistag is added for further protein purification.

Mechanism of OAIP

      Orally Active Insecticidal Peptide has a structure called ICK(inhibitor cysteine knot). This kind of structure contains three disulfide bonds. With this structure OAIP can resist the high temperature, acid base solution and the digest juice of insect gut. OAIP can bind on the voltage-gated sodium channel in the insect’s nervous system, making it paralyze and die eventually.

Features of OAIP

1. Non-toxic: Orally Active Insecticidal Peptide is non-toxic to mammals and bees. Since the structure of the target ion channel is different, Orally Active Insecticidal Peptide does not harm mammals and bees. So it is safe to use it as a biological pesticide.


2. Biodegradable: The toxin is a peptide, so it must degrade over time. After degradation, the toxin will become nutrition inside the soil.


3. Species-specific:According to reference, Orally Active Insecticidal Peptide has specificity to Lepidopteran (moths), Coleopteran (beetles) and Isopteran (termite). So another insect such as bees will not be killed.


4. Eco-friendly: Compare with a chemical pesticide, Orally Active Insecticidal Peptide will not remain in soil and water so that it will not pollute the environment and won’t harm the ecosystem.


      Together, using OAIP is totally an environmentally friendly way for solving harmful insect problems by using this ion channel inhibitor as a biological pesticide.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    INCOMPATIBLE WITH RFC[21]
    Unknown
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]