Difference between revisions of "Part:BBa K1974011"

Line 4: Line 4:
  
 
<h1>'''Introduction:'''</h1>
 
<h1>'''Introduction:'''</h1>
[[File:NCTU_H.png|800px|thumb|center]]
+
[[File:NCTU_H.png|800px|thumb|center|'''Figure 1.''']]
 +
 
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;By ligating the IPTG induced promoter T7 (BBa_ I712074), strong ribosome binding site (BBa_B0034), hv1a, linker, and the 6xHistag (BBa_ K1223006), we can express Hv1a, the toxin by IPTG induction.<br>
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;By ligating the IPTG induced promoter T7 (BBa_ I712074), strong ribosome binding site (BBa_B0034), hv1a, linker, and the 6xHistag (BBa_ K1223006), we can express Hv1a, the toxin by IPTG induction.<br>
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;This year we create a revolutionary system that integrates biological pesticides, an automatic detector, a sprinkler, and IoT. We made a database that contains most of the spider toxins and selected the target toxins by programming. Omega-hexatoxin-Hv1a is coded for the venom of a spider, <i>Hadronyche versuta</i>. It is under the control of the strong T7 promoter. A 6xHistag is added for further protein purification.
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;This year we create a revolutionary system that integrates biological pesticides, an automatic detector, a sprinkler, and IoT. We made a database that contains most of the spider toxins and selected the target toxins by programming. Omega-hexatoxin-Hv1a is coded for the venom of a spider, <i>Hadronyche versuta</i>. It is under the control of the strong T7 promoter. A 6xHistag is added for further protein purification.
Line 10: Line 11:
 
<p style="padding-top:20px;"><b>Mechanism of Hv1a</b></p>
 
<p style="padding-top:20px;"><b>Mechanism of Hv1a</b></p>
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;According to the reference, Omega-hexatoxin-Hv1a has a structure called ICK(inhibitor cysteine knot).<sup>[1]</sup> This kind of structure contains three disulfide bonds and beta-sheet. With this structure, Hv1a can resist the high temperature, acid base solution and the digest juice of insect gut. Hv1a can bind on insect voltage-gated Calcium channels (CaV1) in the central nervous system, making it paralyze and die eventually.  
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;According to the reference, Omega-hexatoxin-Hv1a has a structure called ICK(inhibitor cysteine knot).<sup>[1]</sup> This kind of structure contains three disulfide bonds and beta-sheet. With this structure, Hv1a can resist the high temperature, acid base solution and the digest juice of insect gut. Hv1a can bind on insect voltage-gated Calcium channels (CaV1) in the central nervous system, making it paralyze and die eventually.  
 +
 +
<!--圖*2-->
 +
<p style="padding-top:20px;"><b>Features of Hv1a</b></p>
 +
1. <b>Non-toxic</b>: Omega-hexatoxin-Hv1a is non-toxic to mammals and Hymenoptera (bees). Since the structure of the target ion channel is different, omega-hexatoxin-Hv1a does not harm mammals and bees. So it is safe to use it as a biological pesticide.
 +
<br>
 +
2. <b>Biodegradable</b>: Omega-hexatoxin-Hv1a is a polypeptide so it must degrade over time. After degradation, the toxin will become nutrition in the soil.
 +
<br>
 +
3. <b>Species-specific</b>: According to reference, Omega-hexatoxin-Hv1a has specificity to Lepidopteran (moths), Dipteran (flies) and Orthopteran (grasshoppers).
 +
<br>
 +
4. <b>Eco-friendly</b>: Compare with chemical pesticides, Omega-hexatoxin-Hv1a will not remain in soil and water so that it will not pollute the environment and won’t harm the ecosystem.
 +
 +
 +
 +
 +
 +
 +
 +
  
  

Revision as of 15:11, 16 October 2016


T7 Promoter+RBS+Hv1a+linker+6X His-Tag

Introduction:

Figure 1.

      By ligating the IPTG induced promoter T7 (BBa_ I712074), strong ribosome binding site (BBa_B0034), hv1a, linker, and the 6xHistag (BBa_ K1223006), we can express Hv1a, the toxin by IPTG induction.
      This year we create a revolutionary system that integrates biological pesticides, an automatic detector, a sprinkler, and IoT. We made a database that contains most of the spider toxins and selected the target toxins by programming. Omega-hexatoxin-Hv1a is coded for the venom of a spider, Hadronyche versuta. It is under the control of the strong T7 promoter. A 6xHistag is added for further protein purification.

Mechanism of Hv1a

      According to the reference, Omega-hexatoxin-Hv1a has a structure called ICK(inhibitor cysteine knot).[1] This kind of structure contains three disulfide bonds and beta-sheet. With this structure, Hv1a can resist the high temperature, acid base solution and the digest juice of insect gut. Hv1a can bind on insect voltage-gated Calcium channels (CaV1) in the central nervous system, making it paralyze and die eventually.

Features of Hv1a

1. Non-toxic: Omega-hexatoxin-Hv1a is non-toxic to mammals and Hymenoptera (bees). Since the structure of the target ion channel is different, omega-hexatoxin-Hv1a does not harm mammals and bees. So it is safe to use it as a biological pesticide.
2. Biodegradable: Omega-hexatoxin-Hv1a is a polypeptide so it must degrade over time. After degradation, the toxin will become nutrition in the soil.
3. Species-specific: According to reference, Omega-hexatoxin-Hv1a has specificity to Lepidopteran (moths), Dipteran (flies) and Orthopteran (grasshoppers).
4. Eco-friendly: Compare with chemical pesticides, Omega-hexatoxin-Hv1a will not remain in soil and water so that it will not pollute the environment and won’t harm the ecosystem.






Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Unknown
  • 1000
    COMPATIBLE WITH RFC[1000]