Difference between revisions of "Part:BBa K1897007"
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1897007 short</partinfo> | <partinfo>BBa_K1897007 short</partinfo> | ||
+ | |||
+ | <span class='h3bb'>Sequence and Features</span> | ||
+ | <partinfo>BBa_K1897007 SequenceAndFeatures</partinfo> | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
Line 12: | Line 15: | ||
Apart from containing the Has proteins and luxR, there are also two other genes, the mRFP gene and the Ampicillin resistance gene. The mRFP gene is used as a reporter gene for visualisation of whether the circuit has been successfully induced in the presence of holo-HasA. The Ampicillin resistance gene is used as a selection marker to allow for selection of ''E. coli'' that have taken up the plasmid. | Apart from containing the Has proteins and luxR, there are also two other genes, the mRFP gene and the Ampicillin resistance gene. The mRFP gene is used as a reporter gene for visualisation of whether the circuit has been successfully induced in the presence of holo-HasA. The Ampicillin resistance gene is used as a selection marker to allow for selection of ''E. coli'' that have taken up the plasmid. | ||
− | |||
− | |||
− | |||
===Characterisation via fluorescence microscopy=== | ===Characterisation via fluorescence microscopy=== |
Revision as of 21:01, 11 October 2016
Complete Has operon (controlling expression of luxR)
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 1691
Illegal NheI site found at 1714
Illegal NotI site found at 3609
Illegal NotI site found at 4403
Illegal NotI site found at 4527
Illegal NotI site found at 5531 - 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1720
Illegal BamHI site found at 4476
Illegal BamHI site found at 4810
Illegal BamHI site found at 5466
Illegal XhoI site found at 1 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 1767
Illegal NgoMIV site found at 1771
Illegal NgoMIV site found at 1827
Illegal NgoMIV site found at 1945
Illegal NgoMIV site found at 2099
Illegal NgoMIV site found at 2164
Illegal NgoMIV site found at 2500
Illegal AgeI site found at 1404
Illegal AgeI site found at 1516 - 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
The Has operon is originally a heme acquisition system from the Serratia Marcescens. In the original system, HasA, a hemophore, is secreted out of the bacteria to capture extracellular heme. This holo-HasA then binds to the cell surface receptor HasR. This causes a conformational change in HasR and activation of anti-sigma factor HasS. HasS then releases the extra cytoplasmic function sigma factor HasI. HasI then allows the expression of genes controlled by the Has promoter (pHas).
NUS_Singapore utilises this system to create the RIOT Sensor, one of its two spatial sensors in the RIOTSystem. THe RIOTSystem is a spatially specific cancer diagnostic that relies upon spatial markers that are unique to the tumour microenvironment to allow for specific detection of the tumour. One of the two sensors employed detects the presence of CD44v6, a commonly upregulated cell surface marker on a variety of cancers (Todaro et al., 2014). This is done by conjugating HasA with a CD44v6 antibody (RIOT Transponder). Therefore, the the conjugate can attach to the surface of cancer cells and the holo-HasA would be able to bind to HasR expressed on the E. coli containing the RIOT Sensor. This would then trigger the expression of luxR which is under the expression of the pHas (Figure 1). The luxR is then used in the RIOT Invader, another component of the RIOTSystem which allows for invasion into the cancer cells.
Apart from containing the Has proteins and luxR, there are also two other genes, the mRFP gene and the Ampicillin resistance gene. The mRFP gene is used as a reporter gene for visualisation of whether the circuit has been successfully induced in the presence of holo-HasA. The Ampicillin resistance gene is used as a selection marker to allow for selection of E. coli that have taken up the plasmid.
Characterisation via fluorescence microscopy
To determine if the circuit is indeed functional, it was transformed into E. coli and induced with different concentrations of heme-loaded holo-HasA for 2 hours. The results are seen in Figure 2 where in the negative control where no holo-HasA was added, there is no fluorescence seen. However, in the presence of holo-HasA, the bacteria fluoresce red.
References
Biville, F., Cwerman, H., Létoffé, S., Rossi, M. S., Drouet, V., Ghigo, J. M., & Wandersman, C. (2004). Haemophore‐mediated signalling in Serratia marcescens: a new mode of regulation for an extra cytoplasmic function (ECF) sigma factor involved in haem acquisition. Molecular microbiology, 53(4), 1267-1277.
Cescau, S., Cwerman, H., Letoffe, S., Delepelaire, P., Wandersman, C., & Biville, F. (2007). Heme acquisition by hemophores. Biometals, 20(3-4), 603-613.
Rossi, M. S., Paquelin, A., Ghigo, J. M., & Wandersman, C. (2003). Haemophore‐mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Molecular microbiology, 48(6), 1467-1480.
Todaro, M., Gaggianesi, M., Catalano, V., et al., (2014). CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell stem cell, 14(3), 342-356.
Wandersman, C., & Delepelaire, P. (2004). Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol., 58, 611-647.