Difference between revisions of "Part:BBa K1813003"
(4 intermediate revisions by one other user not shown) | |||
Line 10: | Line 10: | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
<partinfo>BBa_K1813003 SequenceAndFeatures</partinfo> | <partinfo>BBa_K1813003 SequenceAndFeatures</partinfo> | ||
− | |||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display | ||
Line 21: | Line 20: | ||
As a neonicotinoid pesticide, imidacloprid kills insects by irreversibly binding to nicotinic acetyl choline receptors, heavily interfering with neuronal transmission which can kill an insect at high doses. Due to this high level of specificity however mechanisms of resistance have evolved, most notably in the whitefly, possessing this variant of CYP6CM1. Capable of hydroxylating the 5th carbon of imidacloprid faster than other variants, CYP6CM!vQ bestows a partially protective effect against imidacloprid for an organism harboring this gene [1]. | As a neonicotinoid pesticide, imidacloprid kills insects by irreversibly binding to nicotinic acetyl choline receptors, heavily interfering with neuronal transmission which can kill an insect at high doses. Due to this high level of specificity however mechanisms of resistance have evolved, most notably in the whitefly, possessing this variant of CYP6CM1. Capable of hydroxylating the 5th carbon of imidacloprid faster than other variants, CYP6CM!vQ bestows a partially protective effect against imidacloprid for an organism harboring this gene [1]. | ||
− | This coding sequence was synthesized | + | This coding sequence was synthesized and is codon optimized for <i> E. coli</i>. It was originally identified in <i> Bemisia tabaci</i>, the silverleaf whitefly [1]. |
− | + | This part is also used in<html><b> <a href="https://parts.igem.org/Part:BBa_K1813011"> BBa_K1813011</a></b></html>. | |
<h2> References </h2> | <h2> References </h2> | ||
− | |||
[1] Karunker, I., Morou, E., Nikou, D., Nauen, R., Sertchook, R., Stevenson, B. J., ... & Vontas, J. (2009). Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect biochemistry and molecular biology, 39(10), 697-706. | [1] Karunker, I., Morou, E., Nikou, D., Nauen, R., Sertchook, R., Stevenson, B. J., ... & Vontas, J. (2009). Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect biochemistry and molecular biology, 39(10), 697-706. |
Latest revision as of 00:01, 19 September 2015
CYP6CM1
CYP6CM1: Coding sequence of CYP6CM1vQ, an Cytochrome p450 enzyme from the Q population of Bemisia tabaci, hydroxylating the 5C of imidacloprid.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Background of CYP6CM1vQ
As a neonicotinoid pesticide, imidacloprid kills insects by irreversibly binding to nicotinic acetyl choline receptors, heavily interfering with neuronal transmission which can kill an insect at high doses. Due to this high level of specificity however mechanisms of resistance have evolved, most notably in the whitefly, possessing this variant of CYP6CM1. Capable of hydroxylating the 5th carbon of imidacloprid faster than other variants, CYP6CM!vQ bestows a partially protective effect against imidacloprid for an organism harboring this gene [1].
This coding sequence was synthesized and is codon optimized for E. coli. It was originally identified in Bemisia tabaci, the silverleaf whitefly [1]. This part is also used in BBa_K1813011.
References
[1] Karunker, I., Morou, E., Nikou, D., Nauen, R., Sertchook, R., Stevenson, B. J., ... & Vontas, J. (2009). Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect biochemistry and molecular biology, 39(10), 697-706.