Difference between revisions of "Part:BBa K1739002"
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1739002 short</partinfo> | <partinfo>BBa_K1739002 short</partinfo> | ||
− | + | This part uses the BBa_J23104 and has been inserted into the pSB1C3 backbone. The design includes the bipartite csgA signal sequence that targets the protein to the Sec-export pathway and subsequently to the curli export pathway via interaction with csgG (Sivanathan and Hochschild, 2012; Sivanathan and Hochschild, 2013). Sup35-NM is derived from the yeast prion protein Sup35p and excludes the C-terminal domain with the N-terminal domain allowing self-assembly of functional amyloid (Frederick et al., 2014; Glover et al. 1997). This has previously been discussed by Tessier and Lindquist (2009) who show that two beta-sheets bond together in a self-complimenting ‘steric zipper’ that excludes water, leaving a highly stable parallel beta-sheet with one molecule every 4.7 Angstroms. The particular advantage of using Sup35-NM is that in its native state Sup35p has two functional domains, the N and C terminal, separated by the highly charged M domain (Frederick et al., 2014; Glover et al. 1997; Wickner et al., 2007) allowing the fusion of a new functional domain. | |
− | + | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
Line 17: | Line 15: | ||
<partinfo>BBa_K1739002 parameters</partinfo> | <partinfo>BBa_K1739002 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | |||
+ | <h1> References </h1> | ||
+ | Frederick, K., Debelouchina, G., Kayatekin, C., Dorminy, T., Jacavone, A., Griffin, R. and Lindquist, S. (2014). Distinct Prion Strains Are Defined by Amyloid Core Structure and Chaperone Binding Site Dynamics. Chemistry & Biology, 21(2), pp.295-305. | ||
+ | |||
+ | Glover, J., Kowal, A., Schirmer, E., Patino, M., Liu, J. and Lindquist, S. (1997). Self-Seeded Fibers Formed by Sup35, the Protein Determinant of [PSI+], a Heritable Prion-like Factor of S. cerevisiae. Cell, 89(5), pp.811-819. | ||
+ | |||
+ | Sivanathan, V. and Hochschild, A. (2012). Generating extracellular amyloid aggregates using E. coli cells. Genes & Development, 26(23), pp.2659-2667 | ||
+ | |||
+ | Sivanathan, V. and Hochschild, A. (2013). A bacterial export system for generating extracellular amyloid aggregates. Nat Protoc, 8(7), pp.1381-1390. | ||
+ | |||
+ | Tessier, P. and Lindquist, S. (2009). Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol, 16(6), pp.598-605. | ||
+ | |||
+ | Wickner, R., Edskes, H., Shewmaker, F. and Nakayashiki, T. (2007). Prions of fungi: inherited structures and biological roles. Nature Reviews Microbiology, 5(8), pp.611-618. |
Revision as of 13:35, 16 September 2015
Sequence coding for Sup35 with a N-terminal CsgA signal sequence for amyloid export This part uses the BBa_J23104 and has been inserted into the pSB1C3 backbone. The design includes the bipartite csgA signal sequence that targets the protein to the Sec-export pathway and subsequently to the curli export pathway via interaction with csgG (Sivanathan and Hochschild, 2012; Sivanathan and Hochschild, 2013). Sup35-NM is derived from the yeast prion protein Sup35p and excludes the C-terminal domain with the N-terminal domain allowing self-assembly of functional amyloid (Frederick et al., 2014; Glover et al. 1997). This has previously been discussed by Tessier and Lindquist (2009) who show that two beta-sheets bond together in a self-complimenting ‘steric zipper’ that excludes water, leaving a highly stable parallel beta-sheet with one molecule every 4.7 Angstroms. The particular advantage of using Sup35-NM is that in its native state Sup35p has two functional domains, the N and C terminal, separated by the highly charged M domain (Frederick et al., 2014; Glover et al. 1997; Wickner et al., 2007) allowing the fusion of a new functional domain.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 7
Illegal NheI site found at 30 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 718
References
Frederick, K., Debelouchina, G., Kayatekin, C., Dorminy, T., Jacavone, A., Griffin, R. and Lindquist, S. (2014). Distinct Prion Strains Are Defined by Amyloid Core Structure and Chaperone Binding Site Dynamics. Chemistry & Biology, 21(2), pp.295-305.
Glover, J., Kowal, A., Schirmer, E., Patino, M., Liu, J. and Lindquist, S. (1997). Self-Seeded Fibers Formed by Sup35, the Protein Determinant of [PSI+], a Heritable Prion-like Factor of S. cerevisiae. Cell, 89(5), pp.811-819.
Sivanathan, V. and Hochschild, A. (2012). Generating extracellular amyloid aggregates using E. coli cells. Genes & Development, 26(23), pp.2659-2667
Sivanathan, V. and Hochschild, A. (2013). A bacterial export system for generating extracellular amyloid aggregates. Nat Protoc, 8(7), pp.1381-1390.
Tessier, P. and Lindquist, S. (2009). Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol, 16(6), pp.598-605.
Wickner, R., Edskes, H., Shewmaker, F. and Nakayashiki, T. (2007). Prions of fungi: inherited structures and biological roles. Nature Reviews Microbiology, 5(8), pp.611-618.