Difference between revisions of "Part:BBa K1682000"

Line 7: Line 7:
 
<br>
 
<br>
 
The kdpFABC operon is controlled by the KdpDE two-component system (TCS) which consists of KdpD, a membrane-bound sensor kinase, and KdpE, a cytoplasmic response regulator (Polarek, 1992; Walderhaug, 1992). KdpD is stimulated by both intracellular and extracellular K+ (Jung, 2000; Jung, 2001; Roe, 2000; Yan, 2011a; Laermann, 2013). KdpD phosphorylates KdpE upon low potassium concentration (Voelkner, 1993; Puppe, 1996; Jung, 1997a; Jung, 2000). Under an increase in [K+], KdpD phosphatase activity will be enhanced, causing a decrease in phospho-KdpE and kdpFABC expression. Phosphorylated KdpE turns on the expression of kdpFABC (Zhang, 2014a; Laermann, 2013).
 
The kdpFABC operon is controlled by the KdpDE two-component system (TCS) which consists of KdpD, a membrane-bound sensor kinase, and KdpE, a cytoplasmic response regulator (Polarek, 1992; Walderhaug, 1992). KdpD is stimulated by both intracellular and extracellular K+ (Jung, 2000; Jung, 2001; Roe, 2000; Yan, 2011a; Laermann, 2013). KdpD phosphorylates KdpE upon low potassium concentration (Voelkner, 1993; Puppe, 1996; Jung, 1997a; Jung, 2000). Under an increase in [K+], KdpD phosphatase activity will be enhanced, causing a decrease in phospho-KdpE and kdpFABC expression. Phosphorylated KdpE turns on the expression of kdpFABC (Zhang, 2014a; Laermann, 2013).
<!-- -->
+
 
 +
==Construct for characterization ==
 +
 
 +
[[Image:HKUST-Rice 2015 kfig3.PNG|300px|center]]
 +
To make a potassium-sensing device, we obtained the promoter, PkdpF, and combined it with a GFP reporter, BBa_E0240, in BioBrick RFC10 standard so that the promoter activity in different potassium level can be detected and characterized.
 +
 
 +
 
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K1682000 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K1682000 SequenceAndFeatures</partinfo>

Revision as of 18:19, 13 September 2015

Wild Type PkdpF - potassium responsive promoter

Biology of PkdpF

HKUST-Rice 2015 K MECHANISM2.jpg

The potassium ion uptake in E. coli is regulated by several systems under different conditions. The potassium ion transporters, Trk and Kup are constitutively expressed (Epstein & Kim, 1971) while KdpFABC, another transporter is activated under low [K+] conditions (Laimins et al., 1981).

The kdpFABC operon is controlled by the KdpDE two-component system (TCS) which consists of KdpD, a membrane-bound sensor kinase, and KdpE, a cytoplasmic response regulator (Polarek, 1992; Walderhaug, 1992). KdpD is stimulated by both intracellular and extracellular K+ (Jung, 2000; Jung, 2001; Roe, 2000; Yan, 2011a; Laermann, 2013). KdpD phosphorylates KdpE upon low potassium concentration (Voelkner, 1993; Puppe, 1996; Jung, 1997a; Jung, 2000). Under an increase in [K+], KdpD phosphatase activity will be enhanced, causing a decrease in phospho-KdpE and kdpFABC expression. Phosphorylated KdpE turns on the expression of kdpFABC (Zhang, 2014a; Laermann, 2013).

Construct for characterization

HKUST-Rice 2015 kfig3.PNG

To make a potassium-sensing device, we obtained the promoter, PkdpF, and combined it with a GFP reporter, BBa_E0240, in BioBrick RFC10 standard so that the promoter activity in different potassium level can be detected and characterized.


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal EcoRI site found at 61
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 61
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 61
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal EcoRI site found at 61
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal EcoRI site found at 61
  • 1000
    COMPATIBLE WITH RFC[1000]