Difference between revisions of "Part:BBa K1351043"

 
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K1351043 short</partinfo>
 
<partinfo>BBa_K1351043 short</partinfo>
 +
'''The sdp-System of B. subtilis''' consists of two operons: The ''sdpABC'' operon, coding for the production and secretion of the cannibalism toxin SDP and the ''sdpRI'' operon responsible for the regulation and production of the immunity protein SdpI (Fig. 1).
 +
 +
[[File:LMU14 suicide background Fig.1.png|thumb|800px|center|Fig. 1.  Gene organization for the sdpABC sdpRI operons. The hairpin symbolizes thetranscriptional terminators. [1]]]
 +
 +
In vegetative cells, both operons are repressed by the unstable AbrB regulator. However, during early stages of sporulation AbrB itself is repressed by the master regulator of sporulation Spo0A, making ''sdpABC'' and ''sdpRI'' accessible for RNA polymerase. [1]
 +
 +
=== The ''sdpABC'' Operon – Production and Secretion of the Cannibalism Toxin SDP ===
 +
 +
The production of the Cannibalism Toxin SDP is a multi-step process.  The ''sdpC'' sequence encodes the Pro-SdpC1-203,,which is translated by the ribosome.It is a precursor peptide which needs to be processed by a signal peptidases and the two membrane proteins SdpA and SdpB to become functional. This active form of SDP is a 42-amino-acid antimicrobial peptide (AMP) containing a disulfide bond between two cysteine residues located at the N-terminus.(Fig. 2). [2]]
 +
 +
[[File:Background Fig.2.png|thumb|800px|center|Fig. 2. SDP production requires multiple steps. In the cytosol, the full length SdpC (pro-SdpC1-203) is secreted via the Sec pathway. Following secretion, the signal peptidases SipS and SipT cleave the N-terminal signal peptide sequence of SdpC. Disulfide bond formation occurs independently of SdpAB. Finally, posttranslational cleavage of SdpC occurs via SdpAB to produce a 42-amino-acid SDP that will be secreted extracellulary as the active SDP peptide. [2]]]
  
Canibalism toxin of B. subtilis with modification parts SdpA and SdpB.
+
SDP has been shown to be a very effective AMP against a variety of Gram-positive bacteria in the Phylum of the Firmicutes (Fig. 3). It rapidly collapses the proton motive force (PMF), thus inducing autolysis. [3]
  
 +
[[File:Background Fig.3.png|thumb|600px|center|Fig. 3. SDP inhibition curves for pathogenic microbes. Relative growth of the strains named abovewith the presence of increasing concentrations of SDP is shown in the curve. As a negative control the gram-negative bacteria ''K. pneumoniae'' and ''P. aeruginosa'' are depicted, which are unaffected by the toxin SDP, as it specifically targets gram-positive bacteria. ''B. subtilis'' is a gram-positive bacteria, but expresses the immunity protein SdpI and is therefore relatively resistent to the toxin SDP. the ''Stapylococcus'' species (also MRSA) though are quite drastically reduced in the presence of the SDP. [4]]]
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===

Revision as of 10:18, 27 October 2014

Canibalism toxin SDP of B. subtilis The sdp-System of B. subtilis consists of two operons: The sdpABC operon, coding for the production and secretion of the cannibalism toxin SDP and the sdpRI operon responsible for the regulation and production of the immunity protein SdpI (Fig. 1).

Fig. 1. Gene organization for the sdpABC sdpRI operons. The hairpin symbolizes thetranscriptional terminators. [1]

In vegetative cells, both operons are repressed by the unstable AbrB regulator. However, during early stages of sporulation AbrB itself is repressed by the master regulator of sporulation Spo0A, making sdpABC and sdpRI accessible for RNA polymerase. [1]

The sdpABC Operon – Production and Secretion of the Cannibalism Toxin SDP

The production of the Cannibalism Toxin SDP is a multi-step process. The sdpC sequence encodes the Pro-SdpC1-203,,which is translated by the ribosome.It is a precursor peptide which needs to be processed by a signal peptidases and the two membrane proteins SdpA and SdpB to become functional. This active form of SDP is a 42-amino-acid antimicrobial peptide (AMP) containing a disulfide bond between two cysteine residues located at the N-terminus.(Fig. 2). [2]]

Fig. 2. SDP production requires multiple steps. In the cytosol, the full length SdpC (pro-SdpC1-203) is secreted via the Sec pathway. Following secretion, the signal peptidases SipS and SipT cleave the N-terminal signal peptide sequence of SdpC. Disulfide bond formation occurs independently of SdpAB. Finally, posttranslational cleavage of SdpC occurs via SdpAB to produce a 42-amino-acid SDP that will be secreted extracellulary as the active SDP peptide. [2]

SDP has been shown to be a very effective AMP against a variety of Gram-positive bacteria in the Phylum of the Firmicutes (Fig. 3). It rapidly collapses the proton motive force (PMF), thus inducing autolysis. [3]

Fig. 3. SDP inhibition curves for pathogenic microbes. Relative growth of the strains named abovewith the presence of increasing concentrations of SDP is shown in the curve. As a negative control the gram-negative bacteria K. pneumoniae and P. aeruginosa are depicted, which are unaffected by the toxin SDP, as it specifically targets gram-positive bacteria. B. subtilis is a gram-positive bacteria, but expresses the immunity protein SdpI and is therefore relatively resistent to the toxin SDP. the Stapylococcus species (also MRSA) though are quite drastically reduced in the presence of the SDP. [4]

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 759
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 746