Difference between revisions of "Part:BBa K1497016"

 
(12 intermediate revisions by 3 users not shown)
Line 4: Line 4:
  
 
<br><br>
 
<br><br>
<b>Naringenin</b> is the main flavone from grapefruits. In plants, it is synthesized from tyrosine and is one of the central metabolites in the flavone biosynthesis. It is able to reduce the oxidative stress and inhibit some P450 enzymes. One of these cytochrome P450 enzymes are involved in the degradation of caffeine and increase the effect of caffeine after the inhibition with naringenin. The biosynthesis of naringenin is encoded by four genes and these proteins convert L-tyrosine to the bioactive enantiomer S-naringenin.       
+
<b>Naringenin</b> is the main flavone from grapefruits. In plants, it is synthesized from tyrosine and is one of the central metabolites in the flavone biosynthesis. It is able to reduce oxidative stress and inhibit some P450 enzymes. One of these cytochrome P450 enzymes is involved in the degradation of caffeine and increases the effect of caffeine after the inhibition with naringenin. The biosynthesis of naringenin is encoded by four genes. The proteins expressed by these genes convert L-tyrosine to the bioactive enantiomer S-naringenin.       
  
 
<img style="width: 900px; height: 99,4px; margin-left: 15px; margin-right: 15px;" alt=""  
 
<img style="width: 900px; height: 99,4px; margin-left: 15px; margin-right: 15px;" alt=""  
src="https://static.igem.org/mediawiki/parts/4/47/Pathway_I_Gesamtgleichung.png">
+
src="https://static.igem.org/mediawiki/parts/d/d7/Xssdf.png">
 
<p style="width: 900px; height: 99,4px; margin-left: 15px; margin-right: 15px;" alt="" >
 
<p style="width: 900px; height: 99,4px; margin-left: 15px; margin-right: 15px;" alt="" >
<br><b>Figure 1</b> Reaction Scheme of the naringenin producing operon. The substrate for the reaction is L-tyrosine. The substrate is metabolized to S-naringenin in serval steps.</p>
+
<br><b>Figure 1</b> Reaction scheme of the naringenin producing operon. The substrate for the reaction is L-tyrosine. The substrate is metabolized to S-naringenin in four steps.</p>
 
</html><br><br>
 
</html><br><br>
 
===Usage and Biology===
 
===Usage and Biology===
Line 42: Line 42:
 
     <tr style="height: 214.9pt;">
 
     <tr style="height: 214.9pt;">
 
      
 
      
<td style="padding: 0cm 5.4pt; width: 336.7pt; height: 214.9pt;"> This part is a composite of four genes each with the strong RBS (<a href="/Part:BBa_B0034">BBa_B0034</a>).
+
<td style="padding: 0cm 5.4pt; width: 336.7pt; height: 214.9pt;"> This part is a composite of four genes each with a strong RBS (<a href="/Part:BBa_B0034">BBa_B0034</a>).
 
<br><br>
 
<br><br>
 
<ul class="aufz10">
 
<ul class="aufz10">
 
   <li class="block-10vi">4-coumaryl ligase - 4-CL         <a href="/Part:BBa_K1033001">BBa_K1033001</a></li>
 
   <li class="block-10vi">4-coumaryl ligase - 4-CL         <a href="/Part:BBa_K1033001">BBa_K1033001</a></li>
 
   <li class="block-10vi">Tyrosine ammonia lyase - TAL  <a href="/Part:BBa_K1033000">BBa_K1033000</a></li>
 
   <li class="block-10vi">Tyrosine ammonia lyase - TAL  <a href="/Part:BBa_K1033000">BBa_K1033000</a></li>
   <li class="block-10vi">Chalchone isomerase - CHI            <a href="/Part:BBa_K1497100">BBa_K1497100</a></li>  
+
   <li class="block-10vi">Chalchone isomerase - CHI            <a href="/Part:BBa_K1497000">BBa_K1497100</a></li>  
   <li class="block-10vi">Chalchone synthase - CHS          <a href="/Part:BBa_K1497101">BBa_K1497101</a></li>
+
   <li class="block-10vi">Chalchone synthase - CHS          <a href="/Part:BBa_K1497001">BBa_K1497101</a></li>
 
</ul>
 
</ul>
 
<br>
 
<br>
Together, these genes build the naringenin biosynthesis operon without a promotor.  In addition of a promotor part the device is able to build S-naringenin. These device is working in <i>E. coli</i> K and B strains.<br><br>
+
Together, these genes define the naringenin biosynthesis operon without a promotor.  In addition of a promotor part the device is able to produce S-naringenin. This device is working in <i>E. coli</i> K and B strains.<br><br>
 
</td>
 
</td>
 
<td>  
 
<td>  
Line 63: Line 63:
 
        
 
        
 
       <p class="MsoCaption" align="text-align:justify"><span lang="EN-US"><b>Figure 2</b></span></a><span lang="EN-US">
 
       <p class="MsoCaption" align="text-align:justify"><span lang="EN-US"><b>Figure 2</b></span></a><span lang="EN-US">
  Genetic map of the naringenin operon with T7 promoter (<a href="/Part:BBa_K1497017">BBa_K1497017</a>). This device build naringenin in <i>E. coli</i> BL21(DE3) in present of the inductor IPTG . <br></span></p>
+
  Genetic map of the naringenin operon with T7 promoter (<a href="/Part:BBa_K1497017">BBa_K1497017</a>). This device produces naringenin in <i>E. coli</i> BL21(DE3) in presence of the inductor IPTG . <br></span></p>
 
       </td>
 
       </td>
  
Line 86: Line 86:
 
      
 
      
 
<td style="padding: 0cm 5.4pt; width: 336.7pt; height: 214.9pt;">
 
<td style="padding: 0cm 5.4pt; width: 336.7pt; height: 214.9pt;">
   The iGEM Team TU Darmstadt 2014 created the naringenin biosynthesis operons under the control of the T7 promoter <a href="/Part:BBa_ I712074">BBa_I712074</a> and the strong constitutive promoter <a href="/Part:BBa_J23100">BBa_J23100</a>, respectively . They measured the naringenin production after a 16 h incubation time with the naringenin biosensor <a href="/Part:BBa_K1497020">BBa_K1497020</a>. <br><br>The cell pellets from E. coli BL21(DE3) – pSB1C3-fdeR-gfp with and without T7-naringenin operon (<a href="/Part:BBa_K1497017">BBa_K1497017</a>) are shown in figure 3. Only in the cell pellet with <a href="/Part:BBa_K1497017">BBa_K1497017</a> exhibited GFP fluorescence. <br><br>The Darmstadt team was also able to measure the GFP fluorescence quantitatively and to calculate with the help of a calibration curve for the naringenin sensor the production yield of both operons (Figure 4). For <a href="/Part:BBa_K1497017">BBa_K1497017</a> was 3 µM naringenin calculated and for the operon with the constitutive promoter <a href="/Part:BBa_J23100">BBa_J23100</a> (<a href="/Part:BBa_K1497016">BBa_K1497016</a>) was 1.9 µM naringenin calculated.</td>
+
   The iGEM Team TU Darmstadt 2014 created the naringenin biosynthesis operon under the control of the T7 promoter <a href="/Part:BBa_ I712074">BBa_I712074</a> and the strong constitutive promoter <a href="/Part:BBa_J23100">BBa_J23100</a>, respectively. They measured the naringenin production after 16 h incubation time with the naringenin biosensor <a href="/Part:BBa_K1497020">BBa_K1497020</a>. <br><br>The cell pellets from <i>E. coli</i> BL21(DE3) – pSB1C3-fdeR-gfp with and without T7-naringenin operon (<a href="/Part:BBa_K1497017">BBa_K1497017</a>) are shown in figure 3. Only the cells transformed with <a href="/Part:BBa_K1497017">BBa_K1497017</a> exhibited GFP fluorescence. <br><br>The Darmstadt team was also able to measure the GFP fluorescence quantitatively and calculated the production yield of both operons with the help of a calibration curve for the naringenin sensor (Figure 4). They calculated a concentration of 1.9 µM (<a href="/Part:BBa_K1497016">BBa_K1497016</a>) and 3 µM (<a href="/Part:BBa_K1497017">BBa_K1497017</a>) naringenin repectively.</td>
 
  <td>  
 
  <td>  
  
Line 96: Line 96:
 
        
 
        
 
       <p class="MsoCaption" align="text-align:justify"><span lang="EN-US"><b>Figure 2</b></span></a><span lang="EN-US">
 
       <p class="MsoCaption" align="text-align:justify"><span lang="EN-US"><b>Figure 2</b></span></a><span lang="EN-US">
  Cell pellets with and without T7-Naringenin operon from <i>E. coli</i> BL21(DE3)-pSB1C3-<i>fdeR-gfp</i>. By using ultraviolet light the pellet containing the naringenin operon shows a GFP fluorescence.<br></span></p>
+
  Cell pellets with and without T7-Naringenin operon from <i>E. coli</i> BL21(DE3)-pSB1C3-<i>fdeR-gfp</i>. The pellet containing the naringenin operon shows a GFP fluorescence under ultraviolet light.<br></span></p>
 
       </td>
 
       </td>
  
Line 121: Line 121:
 
        
 
        
 
       <p class="MsoCaption" align="text-align:justify"><span lang="EN-US"><b>Figure 1</b></span></a><span lang="EN-US">
 
       <p class="MsoCaption" align="text-align:justify"><span lang="EN-US"><b>Figure 1</b></span></a><span lang="EN-US">
  Fluorescence of cells with and without the T7-naringenin operon <a href="/Part:BBa_K1497017">BBa_K1497017</a>  from <i>E. coli</i> BL21(DE3)-pSB1C3-<i>fdeR-gfp</i> and J23100-naringenin operon (<a href="/Part:BBa_K1497016">BBa_K1497016</a>) from <i>E. coli</i> Top10-pSB1C3-<i>fdeR-gfp</i>, respectively. <i>E. coli</i> BL21(DE3)-pSB1C3-<i>fdeR-gfp</i> without T7-naringenin operon showed no detectable fluorescence. Only in the cells with the functional operon is the GFP fluorescence measurable. The estimated yields are 3 µM for <a href="/Part:BBa_K1497017">BBa_K1497017</a> and 1,9 µM for <a href="/Part:BBa_K1497016">BBa_K1497016</a>. <br></span></p>
+
  Fluorescence of cells with and without the T7-naringenin operon <a href="/Part:BBa_K1497017">BBa_K1497017</a>  from <i>E. coli</i> BL21(DE3)-pSB1C3-<i>fdeR-gfp</i> and J23100-naringenin operon (<a href="/Part:BBa_K1497016">BBa_K1497016</a>) from <i>E. coli</i> Top10-pSB1C3-<i>fdeR-gfp</i>, respectively. <i>E. coli</i> BL21(DE3)-pSB1C3-<i>fdeR-gfp</i> without T7-naringenin operon showed no detectable fluorescence. Only in the cells with the functional operon is the GFP fluorescence measurable. The estimated yields are 3 µM for <a href="/Part:BBa_K1497017">BBa_K1497017</a> and 1.9 µM for <a href="/Part:BBa_K1497016">BBa_K1497016</a>. <br></span></p>
 
       </td>
 
       </td>
  
Line 143: Line 143:
 
<partinfo>BBa_K1497016 parameters</partinfo>
 
<partinfo>BBa_K1497016 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===References===
 +
 +
1. Fuhr UWE, Klittich K, Staib AH (1993) Inhibitory effect of grapefruit juice and its bitter principal , naringenin , on CYP1A2 dependent metabolism of caffeine in. Br J clin Pharmac 35:431–436.
 +
 +
2. Siedler S, Stahlhut SG, Malla S, et al. (2014) Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic engineering 21:2–8. doi: 10.1016/j.ymben.2013.10.011
 +
 +
3. Yamaguchi T, Kurosaki F, Suh D, et al. (1999) Cross-reaction of chalcone synthase and stilbene synthase overexpressed in Escherichia coli. 460:457–461.
 +
 +
4. Jez JM, Bowman ME, Richard A, Noel JP (2000) letters Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. 7:

Latest revision as of 14:15, 25 October 2014

Constitutive naringenin producing operon

Naringenin is the main flavone from grapefruits. In plants, it is synthesized from tyrosine and is one of the central metabolites in the flavone biosynthesis. It is able to reduce oxidative stress and inhibit some P450 enzymes. One of these cytochrome P450 enzymes is involved in the degradation of caffeine and increases the effect of caffeine after the inhibition with naringenin. The biosynthesis of naringenin is encoded by four genes. The proteins expressed by these genes convert L-tyrosine to the bioactive enantiomer S-naringenin.


Figure 1 Reaction scheme of the naringenin producing operon. The substrate for the reaction is L-tyrosine. The substrate is metabolized to S-naringenin in four steps.



Usage and Biology

This part is a composite of four genes each with a strong RBS (BBa_B0034).


Together, these genes define the naringenin biosynthesis operon without a promotor. In addition of a promotor part the device is able to produce S-naringenin. This device is working in E. coli K and B strains.

iGEM TU Darmstadt 2014 :)

Figure 2 Genetic map of the naringenin operon with T7 promoter (BBa_K1497017). This device produces naringenin in E. coli BL21(DE3) in presence of the inductor IPTG .


Functional Parameters


The iGEM Team TU Darmstadt 2014 created the naringenin biosynthesis operon under the control of the T7 promoter BBa_I712074 and the strong constitutive promoter BBa_J23100, respectively. They measured the naringenin production after 16 h incubation time with the naringenin biosensor BBa_K1497020.

The cell pellets from E. coli BL21(DE3) – pSB1C3-fdeR-gfp with and without T7-naringenin operon (BBa_K1497017) are shown in figure 3. Only the cells transformed with BBa_K1497017 exhibited GFP fluorescence.

The Darmstadt team was also able to measure the GFP fluorescence quantitatively and calculated the production yield of both operons with the help of a calibration curve for the naringenin sensor (Figure 4). They calculated a concentration of 1.9 µM (BBa_K1497016) and 3 µM (BBa_K1497017) naringenin repectively.
iGEM TU Darmstadt 2014 :)

Figure 2 Cell pellets with and without T7-Naringenin operon from E. coli BL21(DE3)-pSB1C3-fdeR-gfp. The pellet containing the naringenin operon shows a GFP fluorescence under ultraviolet light.

Figure 1 Fluorescence of cells with and without the T7-naringenin operon BBa_K1497017 from E. coli BL21(DE3)-pSB1C3-fdeR-gfp and J23100-naringenin operon (BBa_K1497016) from E. coli Top10-pSB1C3-fdeR-gfp, respectively. E. coli BL21(DE3)-pSB1C3-fdeR-gfp without T7-naringenin operon showed no detectable fluorescence. Only in the cells with the functional operon is the GFP fluorescence measurable. The estimated yields are 3 µM for BBa_K1497017 and 1.9 µM for BBa_K1497016.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 7
    Illegal NheI site found at 30
    Illegal NheI site found at 1147
    Illegal NheI site found at 4674
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1714
    Illegal BglII site found at 4683
    Illegal XhoI site found at 3681
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 1820
    Illegal NgoMIV site found at 2652
    Illegal NgoMIV site found at 4654
    Illegal NgoMIV site found at 5230
    Illegal AgeI site found at 1915
    Illegal AgeI site found at 2081
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 3110
    Illegal BsaI site found at 4603
    Illegal BsaI.rc site found at 1346
    Illegal BsaI.rc site found at 4085


References

1. Fuhr UWE, Klittich K, Staib AH (1993) Inhibitory effect of grapefruit juice and its bitter principal , naringenin , on CYP1A2 dependent metabolism of caffeine in. Br J clin Pharmac 35:431–436.

2. Siedler S, Stahlhut SG, Malla S, et al. (2014) Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic engineering 21:2–8. doi: 10.1016/j.ymben.2013.10.011

3. Yamaguchi T, Kurosaki F, Suh D, et al. (1999) Cross-reaction of chalcone synthase and stilbene synthase overexpressed in Escherichia coli. 460:457–461.

4. Jez JM, Bowman ME, Richard A, Noel JP (2000) letters Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. 7: