Difference between revisions of "Part:BBa K1429002"

 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
<partinfo>BBa_K1429002 short</partinfo>
 
<partinfo>BBa_K1429002 short</partinfo>
  
IP free cyan fluorescent protein.  We have a ribosome binding site (RBS).
+
IP free synthetic non-Aequorea cyan fluorescent protein with ribosome binding site.  
  
<h4>Background</h4>
+
===Usage and Biology===
<div class='entry-results'><p>We want to take Tuesday&#39;s PCR products and put them into the pSB1C3 backbone.&nbsp;</p>
+
Can be used as a reporter. Production of CFP in E. coli under the control of a T7 promoter (part subcloned into pUC19) shown here as "CFP1":
  
<p><strong>Digest PCRs:</strong></p>
+
https://static.igem.org/mediawiki/2014/b/bc/UV_light.jpg
  
<p>10 ul PCR product</p>
+
https://static.igem.org/mediawiki/2014/d/d7/20141015_174513.jpg
 
+
<p>2 ul cutsmart buffer (10x stock)</p>
+
 
+
<p>1 ul PstI</p>
+
 
+
<p><u>1 ul EcoRI</u></p>
+
 
+
<p>20 ul total --&gt; incubate for 30 min at 37C</p>
+
 
+
<p>&nbsp;</p>
+
 
+
<p><strong>PCR purify digest product (only 14 ul - save 6 ul):</strong></p>
+
 
+
<p>Follow kit protocol. Elute in elution buffer.</p>
+
 
+
<p>Worried that the washed columns won&#39;t bind DNA, we are going to use some of the set-aside (unpurified) digest product for a backup ligation. We&#39;ll run a gel of our purification, but we are going to set up a ligation beforehand, so we won&#39;t have even rough estimates of DNA concentrations.</p>
+
 
+
<p>Set up ligations:</p>
+
 
+
<table style="width: 500px;">
+
<tbody>
+
<tr>
+
<td><strong>Component</strong></td>
+
<td><strong>Using purified digest product</strong></td>
+
<td><strong>Using unpurified digest product</strong></td>
+
<td><strong>BB alone</strong></td>
+
</tr>
+
<tr>
+
<td>dH2O</td>
+
<td>x</td>
+
<td>11</td>
+
<td>14</td>
+
</tr>
+
<tr>
+
<td>Insert (RFP or GFP)</td>
+
<td>14</td>
+
<td>3</td>
+
<td>x</td>
+
</tr>
+
<tr>
+
<td>1:10 BB</td>
+
<td>3</td>
+
<td>3</td>
+
<td>3</td>
+
</tr>
+
<tr>
+
<td>T4 buffer (10</td>
+
<td>1</td>
+
<td>1</td>
+
<td>1</td>
+
</tr>
+
<tr>
+
<td>&nbsp;</td>
+
<td>&nbsp;</td>
+
<td>&nbsp;</td>
+
<td>&nbsp;</td>
+
</tr>
+
</tbody>
+
</table>
+
 
+
<p>The above were incubated 30 min at RT then stored at -20C.</p>
+
 
+
<p>&nbsp;</p>
+
</div>
+
<br>
+
</div>
+
<div class='entry'>
+
<h4>Results</h4>
+
<div class='entry-results'><p>We ran a 1% gel of the digest before and after purification. We had a decent yield, maybe 40% of our initial digest product in the purified lanes.&nbsp;</p>
+
</div>
+
<br>
+
</div>
+
<div class='entry'>
+
<h4>Conclusions</h4>
+
<div class='entry-results'><p>Next step: Transform the ligated plasmids into E. coli!</p>
+
</div>
+
<br>
+
</div>
+
 
+
<div class='entry'>
+
<div class='entry-results'><p><strong>Background info:</strong></p>
+
 
+
<ul>
+
<li>The plasmid is about 2000 base pairs (bp). &nbsp;</li>
+
<li>Our PCRed GFP (gene of interest) is about 750 bp.</li>
+
<li>Assume that&nbsp;1 uL of this PCR purified GFP = 50 ng (info from Ellen).</li>
+
</ul>
+
 
+
<p><strong>Calculations:</strong></p>
+
 
+
<p>We have 6 uL of our gene of interest in a solution totaling 20 uL.</p>
+
 
+
<p>So we have:</p>
+
 
+
<p><span class="math-tex">\(\displaystyle \frac{6\mu L }{1}PCR \; purified \; GFP * \frac{50 ng}{1 \mu L} * \frac{1}{20\mu L} = \frac{300 ng}{20 \mu L} PCR \; purified \: GFP = 15\frac{ng}{\mu L}PCR \; purified \; GFP\)</span></p>
+
 
+
<p>&nbsp;</p>
+
 
+
<p>The iGEM kit provides a linearized plasmid backbone in a solution with a concentration of 25 ng/uL. &nbsp;</p>
+
 
+
<p>In our digestion step, we used 4 uL of the linearized plasmid backbone and 4 uL of the enzyme master mix.&nbsp;</p>
+
 
+
<p>So, we have:</p>
+
 
+
<p><span class="math-tex">\(\displaystyle \frac{4\mu L }{1}plasmid * \frac{25 ng}{1 \mu L} * \frac{1}{(4+4)\mu L} = \frac{100 ng}{8 \mu L} plasmid= 12.5\frac{ng}{\mu L}plasmid\)</span></p>
+
 
+
<p>We need to have a GFP:plasmid ratio of at least 3:1 to make sure that we have enough pieces of the gene of interest to successfully connect to&nbsp;the plasmid backbone.</p>
+
 
+
<p>Now, we&#39;ll use the <a href="http://nebiocalculator.neb.com/#!/" target="_blank">NEBioCalculator</a>&nbsp; to get the number of moles for each (see the pictures).</p>
+
 
+
<p>So, we have:</p>
+
 
+
<p><span class="math-tex">\(\displaystyle \frac{32 . 36 \frac{fmol}{\mu L} \; GFP}{9 . 632 \frac{fmol}{\mu L} \; plasmid} = 3 . 36 \; GFP : 1 \; plasmid \gt 3 \; GFP : 1 \; plasmid\)</span></p>
+
 
+
<p>Therefore, we can use a ratio of&nbsp;&nbsp;1 uL of the PCR purified&nbsp;GFP solution to 1 uL of the digested plasmid solution.</p>
+
 
+
<p>&nbsp;</p>
+
</div>
+
</div>
+
<!-- Add more about the biology of this part here
+
===Usage and Biology===
+
  
<!-- -->
+
The excitation and emission spectra match the specifications on the DNA2.0 website. See 'experience' tab above for spectra.
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K1429002 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K1429002 SequenceAndFeatures</partinfo>

Latest revision as of 00:28, 22 October 2014

Cyan Fluorescent Protein (CFP) "Cindy Lou" coding region, intellectual property-free

IP free synthetic non-Aequorea cyan fluorescent protein with ribosome binding site.

Usage and Biology

Can be used as a reporter. Production of CFP in E. coli under the control of a T7 promoter (part subcloned into pUC19) shown here as "CFP1":

UV_light.jpg

20141015_174513.jpg

The excitation and emission spectra match the specifications on the DNA2.0 website. See 'experience' tab above for spectra. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 74
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 2