Difference between revisions of "Part:BBa K1045003"
Line 5: | Line 5: | ||
Cyclic di-AMP was discovered to be an essential signal molecule in Gram-positive bacteria including the pathogenic species ''Streptococcus pneumoniae'', ''Staphylococcus aureus'' and ''Listeria monocytogenes''. Both, loss and overproduction of c-di-AMP have detrimental effects on cell growth, cell wall synthesis, and propagation. Thus, the diadenylate cyclase (DAC) which catalyses the condensation reaction of two ATP molecules to c-di-AMP is the key factor for signal molecule production and maintenance of c-di-AMP homeostasis. We are convinced that the DAC is a very promising target for the development of highly specific antibiotic substances which exclusively act on Gram-positive bacteria and are not harmful to Gram-negative ones, including the gut bacterium ''Escherichia coli'' as well as humans. Here, we introduce a truncated but functional DAC which localizes to the cytosol and can easily be purified. Furthermore, protein crystals were obtained as well as the protein structure by X-ray diffraction analysis. The part [[Part:BBa_K1045003|BBa_K1045003]] described here, covers the amino acids 100 to 273 of the full length coding sequence of CdaA. <br /> For a precise description of this part, please vistit the experience page! | Cyclic di-AMP was discovered to be an essential signal molecule in Gram-positive bacteria including the pathogenic species ''Streptococcus pneumoniae'', ''Staphylococcus aureus'' and ''Listeria monocytogenes''. Both, loss and overproduction of c-di-AMP have detrimental effects on cell growth, cell wall synthesis, and propagation. Thus, the diadenylate cyclase (DAC) which catalyses the condensation reaction of two ATP molecules to c-di-AMP is the key factor for signal molecule production and maintenance of c-di-AMP homeostasis. We are convinced that the DAC is a very promising target for the development of highly specific antibiotic substances which exclusively act on Gram-positive bacteria and are not harmful to Gram-negative ones, including the gut bacterium ''Escherichia coli'' as well as humans. Here, we introduce a truncated but functional DAC which localizes to the cytosol and can easily be purified. Furthermore, protein crystals were obtained as well as the protein structure by X-ray diffraction analysis. The part [[Part:BBa_K1045003|BBa_K1045003]] described here, covers the amino acids 100 to 273 of the full length coding sequence of CdaA. <br /> For a precise description of this part, please vistit the experience page! | ||
<p> | <p> | ||
− | <html><object width="420" height="315"><param name="movie" value="// | + | <html><object width="420" height="315"><param name="movie" value="http://youtu.be/T0xpaOZtjfk;version=3&rel=0"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://youtu.be/T0xpaOZtjfk;rel=0" type="application/x-shockwave-flash" width="420" height="315" allowscriptaccess="always" allowfullscreen="true"></embed></object></html> |
</p> | </p> | ||
− | + | http://youtu.be/T0xpaOZtjfk | |
Revision as of 16:39, 28 October 2013
Diadenylate cyclase domain of Listeria monocytogenes cdaA (DacA)
The severe threat caused by bacteria which are resistant to conventional antibiotic drugs and the appearance of even multi-resistant strains demonstrates the urgent need for the discovery of new antibacterial substance classes.
Cyclic di-AMP was discovered to be an essential signal molecule in Gram-positive bacteria including the pathogenic species Streptococcus pneumoniae, Staphylococcus aureus and Listeria monocytogenes. Both, loss and overproduction of c-di-AMP have detrimental effects on cell growth, cell wall synthesis, and propagation. Thus, the diadenylate cyclase (DAC) which catalyses the condensation reaction of two ATP molecules to c-di-AMP is the key factor for signal molecule production and maintenance of c-di-AMP homeostasis. We are convinced that the DAC is a very promising target for the development of highly specific antibiotic substances which exclusively act on Gram-positive bacteria and are not harmful to Gram-negative ones, including the gut bacterium Escherichia coli as well as humans. Here, we introduce a truncated but functional DAC which localizes to the cytosol and can easily be purified. Furthermore, protein crystals were obtained as well as the protein structure by X-ray diffraction analysis. The part BBa_K1045003 described here, covers the amino acids 100 to 273 of the full length coding sequence of CdaA.
For a precise description of this part, please vistit the experience page!
http://youtu.be/T0xpaOZtjfk
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]