Difference between revisions of "Part:BBa K1172902"

Line 13: Line 13:
 
<partinfo>BBa_K1172902 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K1172902 SequenceAndFeatures</partinfo>
  
 +
<p align="justify">
 +
The konstitutive Alanin-Racemase (''alr'') and the catabolic Alanine-Racemase (''dadX'') were deleted in ''E. coli'' K-12 leading to the Strain K-12 ∆alr ∆dadX. <br>
 +
To avoid a second recombination of the Alanine-Racemase (''alr'') from the plasmid with the genome, the whole coding sequence was deleted in the genome and the characterization of the Alanine-Racemase was performed with the antibiotic chlormaphenicol. For the complementation the Alanine-Racemase (''alr'') was brought under the control of the ptac promoter. The ptac promoter is a fusion promoter of the -35-region of the trp promoter and the -10-region the lac promoter, so that there only slight repression and the expression of the Alanine-Racemase is highly activated ([http://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_Strain#References De Boer ''et al.'', 1983]). Therefore an induction with IPTG was not necessary on M9, but surprisingly it was essential on LB-agar.<br>
 +
The deletion of the constitutive Alanine-Racemase (''alr'') and the catabolic Alanine-Racemase (''dadX'') in ''E. coli'' leads to a strict dependance on the amino acid D-alanine, as aspected. As shown in the figure below the bacteria with this deletions are not any more able to grow on normal M9-media without D-alanine supplementation (purple curve), whereas the wild type does (red curve). The auxotrophic Safety-Strain grows only on media with D-alanine (5 mM) supplemented (blue curve) or by a complementation of the Alanine-Racemase via plasmid. Further it can be seen, that the auxotrophic mutant K-12 ∆alr ∆dadX grows slightly slower, than the wild type K-12. In contrast the bacteria containing the Alanine-Racemase (''alr'') on the plasmid <bbpart>BBa_K1172902</bbpart> does hardly show a disadvantage in the cell division compared to the wild type.</p>
 +
<br>
 +
 +
[[File:Team-Bielefeld-Biosafety-Strain-alrdadXdeletion.jpg|600px|thumb|center|'''Figure 2:''' Characterization of the D-alanine auxotrophic Biosafety-Strain. The Biosafety-Strain K-12 ∆alr ∆dadX depends strict on the presence of D-alanine in the media or a complementation via plasmid containing an intact Alanine-Racemase.]]
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Revision as of 13:24, 6 October 2013

alanine racemase (''alr'') under the control of the P''tac'' promoter


Usage and Biology

The alanine-racemase alr (EC 5.1.1.1) from the gram-negative enteric bacteria Escherichia coli is a racemase, which catalyses the reversible reaction from L-alanine into the enantiomer D-alanine. For this reaction the cofactor pyridoxal-5'-phosphate (PLP) is typically needed. The constitutive alanine-racemase (alr) is naturally responsible for the accumulation of D-Alanin, which is an essential component of the bacterial cell wall, because it is used for the crosslinkage of the peptidoglykan ([http://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Walsh, 1989]).
The use of D-Alanine instead of a typically L-amino acids prevents the cleavage by peptdidases, but a lack of D-Alanine leeds to a bacteriostatic characteristic. So in the absence of D‑Alanine dividing cells will lyse rapidly. This approach is used by our Biosafety-Strain, a D-alanine auxotrophic mutant (K-12 ∆alr ∆dadX). The Safety-Strain grows only with a plasmid containing the Alanine-Racemase (BBa_K1172901) for the complementation of the D-alanine auxotrophic. Because the Alanine-Racemase is therefore essential for bacterial cell division, this approach guarantees a high plasmid stability, which is extremely important when the plasmid contains a toxic gene like the Barnase. In addition this construction provides the possibility of a double kill-switch system. Because if the expression of the Alanine-Racemase is repressed and there is no D-Alanine-Supplementation in the media, the cells would not increase.


Figure 1: The alanine-racemase (BBa_K1172901) from E. coli catalyses the reversible reaction from L-alanine to D-alanine. For this isomerisation the cofactor pyridoxal-5'-phosphate is necessary.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 385
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 309
    Illegal BamHI site found at 1011
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 427
    Illegal AgeI site found at 727
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 184

The konstitutive Alanin-Racemase (alr) and the catabolic Alanine-Racemase (dadX) were deleted in E. coli K-12 leading to the Strain K-12 ∆alr ∆dadX.
To avoid a second recombination of the Alanine-Racemase (alr) from the plasmid with the genome, the whole coding sequence was deleted in the genome and the characterization of the Alanine-Racemase was performed with the antibiotic chlormaphenicol. For the complementation the Alanine-Racemase (alr) was brought under the control of the ptac promoter. The ptac promoter is a fusion promoter of the -35-region of the trp promoter and the -10-region the lac promoter, so that there only slight repression and the expression of the Alanine-Racemase is highly activated ([http://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_Strain#References De Boer et al., 1983]). Therefore an induction with IPTG was not necessary on M9, but surprisingly it was essential on LB-agar.
The deletion of the constitutive Alanine-Racemase (alr) and the catabolic Alanine-Racemase (dadX) in E. coli leads to a strict dependance on the amino acid D-alanine, as aspected. As shown in the figure below the bacteria with this deletions are not any more able to grow on normal M9-media without D-alanine supplementation (purple curve), whereas the wild type does (red curve). The auxotrophic Safety-Strain grows only on media with D-alanine (5 mM) supplemented (blue curve) or by a complementation of the Alanine-Racemase via plasmid. Further it can be seen, that the auxotrophic mutant K-12 ∆alr ∆dadX grows slightly slower, than the wild type K-12. In contrast the bacteria containing the Alanine-Racemase (alr) on the plasmid BBa_K1172902 does hardly show a disadvantage in the cell division compared to the wild type.


Figure 2: Characterization of the D-alanine auxotrophic Biosafety-Strain. The Biosafety-Strain K-12 ∆alr ∆dadX depends strict on the presence of D-alanine in the media or a complementation via plasmid containing an intact Alanine-Racemase.