Difference between revisions of "Part:BBa K1151000"

(ICP-AES assay)
(ICP-AES assay)
Line 79: Line 79:
  
 
                                     [[File:machinery.jpg]]
 
                                     [[File:machinery.jpg]]
'''Figure 5:''' Samples analysis.
+
'''Figure 6:''' Samples analysis.
  
  

Revision as of 13:06, 1 October 2013

Nickel-responsive pleiotropic regulator (HpNikR)

The HpNikR protein is a pleiotropic regulator from Helicobacter pylori. In presence of nickel it can acts as an activator or a repressor depending of the specific promoter that contains its operator site. It consists of two dimeric DNA binding domains separated by a tetrameric regulatory domain that binds nickel. This domain corresponds to the C-terminal regulatory domain which contains four nickel binding sites at the tetramer interface. Binding nickel, then a conformational change allows it to activate or repress trascription.


Biochemistry

        Cattura122.jpg        Cattura7.jpg                                   

Figure 1: Representation of the Apo-NikR tetrameric form; HpNikR nickel-binding domain (tetramer).



Cattura1.jpg

Figure 2: Proteic sequence analysis (from Uniprot).

NikR expression using BL21 (DE3) cells

First we made ​​competent BL21 cells and we transformed it with the plasmid containing NikR. We then proceeded with the normal protocol of induction with IPTG.

Cytosol/membrane separation by Zerial method

To confirm that NikR is a cytosolic protein (not expressed in multivesicular bodies, and then in membrane) we performed a separation membrane-cytosol (Zerial method) (sample: 2-hours induced cells).

                                                 42.jpg

Figure 3: PAGE of the separation.

NikR purification by Ni-NTA resin

NikR (sample: 2-hours induced cells) can be purified by Ni-NTA resin, which has a high affinity for histidine residues.

                                    41.jpg

Figure 4: Purification result (Eluate 1: 0,82 ug/ul).

NikR incubation with nickel sulfate and Sephadex molecular exclusion chromatography

We therefore decided to study the NikR protein: first, we focused on its characteristic to bind nickel. We have developed a protocol of incubation of the protein with nickel sulfate (stock: 10 ug/ul), in presence of an Incubation buffer (20 mM Tris pH 7,6, 100 mM NaCl). These are the samples we tested (each has a final volume of 100 ul):

1. 1,2 ul (1 ug) NikR + 0,3 ul Nickel sulfate + 98,5 ul Incubation buffer

2. 6,1 ul (5 ug) NikR + 1,5 ul Nickel sulfate + 92,4 ul Incubation buffer

3. 12,2 ul (10 ug) NikR + 3 ul Nickel sulfate + 84,8 ul Incubation buffer

The samples were put on wheel at 4°C overnight.

In order to eliminate the nickel eccess we proceeded with a molecular exclusion chromatography on Sephadex G-25 resin.

                              Resina.jpg

Figure 5: Sephadex columns.


In this way the protein with the nickel-binding sites saturated will be released first from the column, collecting the eluate easily. The nickel in excess will remain trapped in the pores of the resin.

ICP-AES assay

Inductively-Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) is a type of emission spectroscopy that uses the inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element. The intensity of this emission is indicative of the concentration of the element within the sample. These are the samples (also here the final volume of each is 100 ul) that we have analyzed:

1. 100 ul Incubation buffer

2. 1,5 ul Nickel sulfate + 98,5 ul Incubation buffer

3. 1,2 ul (1 ug) NikR + 0,3 ul Nickel sulfate + 98,5 ul Incubation buffer

4. 6,1 ul (5 ug) NikR + 1,5 ul Nickel sulfate + 92,4 ul Incubation buffer

5. 12,2 ul (10 ug) NikR + 3 ul Nickel sulfate + 84,8 ul Incubation buffer

6. Sephadex resin after incubation with the sample n.4

                                   Machinery.jpg

Figure 6: Samples analysis.


Experimental data and results

Tabella1.jpg

Icp3.jpg Icp2.jpg

ATR-FTIR assay

To complete our analysis on the protein, we studied the conformational changes which HpNikR goes against in the bond with Ni2+ ions through Attentuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). With this technique it is possible to acquire the infrared absorption spectra of our control (Apo-HpNikR) and of our protein treated with NiSO4 (complex HpNikR:Ni), so as to obtain the IR differential spectrum. By means of these it will be possible to highlight how some spectrum peaks suffer changes in infrared absorption due to changes in protein conformation induced by the nickel binding.

                                ATR.jpg

Figure 6: Results.


Our hypothesis

The analysis of the spectrum of the native protein shows two peaks at values ​​of wave number of 1261 cm-1 and 800 cm-1; these peaks are absent in the protein in the presence of nickel and everything is confirmed by the differential spectrum.These peaks could be assigned to a tyrosine residue that due to the interaction with nickel undergoes a deprotonation of the hydroxyl functional group. So it can be assumed that the bond to the metal induces a change necessary to the regulator NikR for the interaction with DNA.

                                Y3.jpg

Figure 7: The 72 tyrosine residue.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]