Difference between revisions of "Part:BBa K1092005:Design"

(Design Notes)
(References)
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
  
 
===References===
 
===References===
[1] Hadibarata, T. and Kristanti, R.A., 2012. identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of polyporus sp. s133. journal of environmental management, 111(0), pp. 115-119.
+
[1] Hadibarata, T. and Kristanti, R.A., 2012. identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of polyporus sp. s133. ''journal of environmental management'', 111(0), pp. 115-119.
  
[2] Hadibarata, T., Teh, Z., Rubiyatno, Zubir, M., Khudhair, A., Yusoff, A., Salim, M. and Hidayat, T., 2013. identification of naphthalene metabolism by white rot fungus pleurotus eryngii. bioprocess and biosystems engineering, 36(10), pp. 1455-1461.
+
[2] Hadibarata, T., Teh, Z., Rubiyatno, Zubir, M., Khudhair, A., Yusoff, A., Salim, M. and Hidayat, T., 2013. identification of naphthalene metabolism by white rot fungus pleurotus eryngii. ''bioprocess and biosystems engineering'', 36(10), pp. 1455-1461.
  
[3] Mohammadian, M., Fathi-roudsari, M., Mollania, N., Badoei-dalfard, A., khajeh, k., 2010. enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. journal of industrial microbiology & biotechnology, 37(8), pp. 863-869.
+
[3] Mohammadian, M., Fathi-roudsari, M., Mollania, N., Badoei-dalfard, A., khajeh, k., 2010. enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. ''journal of industrial microbiology & biotechnology'', 37(8), pp. 863-869.
  
[4] Mollania, N., Khajeh, K., Ranjbar, B., Rashno, F., Akbari, N. and Fathi-roudsari, m., 2013. an efficient in vitro refolding of recombinant bacterial laccase in escherichia coli. enzyme and microbial technology, 52(6–7), pp. 325-330.
+
[4] Mollania, N., Khajeh, K., Ranjbar, B., Rashno, F., Akbari, N. and Fathi-roudsari, m., 2013. an efficient in vitro refolding of recombinant bacterial laccase in escherichia coli. ''enzyme and microbial technology'', 52(6–7), pp. 325-330.
  
[5] Sharma, P., Goel, R. and Capalash, N., 2007. bacterial laccases. world journal of microbiology and biotechnology, 23(6), pp. 823-832.
+
[5] Sharma, P., Goel, R. and Capalash, N., 2007. bacterial laccases. ''world journal of microbiology and biotechnology'', 23(6), pp. 823-832.
  
[6] Zeng, J., Lin, X., Zhang, J., Zhu, H., Chen, H. and Wong, M., 2013. successive transformation of benzo[a]pyrene by laccase of trametes versicolor and pyrene-degrading mycobacterium strains. applied microbiology and biotechnology, 97(7), pp. 3183-3194.
+
[6] Zeng, J., Lin, X., Zhang, J., Zhu, H., Chen, H. and Wong, M., 2013. successive transformation of benzo[a]pyrene by laccase of trametes versicolor and pyrene-degrading mycobacterium strains. ''applied microbiology and biotechnology'', 97(7), pp. 3183-3194.
  
[7] Huang H., Cai R., Du Y., Zeng T., 1996. The automatic kinetic spectrophotometric assay for laccase activity usingo-phenylenediamine. Laboratory Robotics and Automation, 8(4), pp 231–235.
+
[7] Huang H., Cai R., Du Y., Zeng T., 1996. The automatic kinetic spectrophotometric assay for laccase activity usingo-phenylenediamine. ''laboratory robotics and automation'', 8(4), pp 231-235.

Latest revision as of 04:14, 28 September 2013

T7-RBS-Laccase


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1386
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1547


Design Notes

We codon optimized laccase gene from Bacillus sp. HR03.

Source

Gene synthesis

References

[1] Hadibarata, T. and Kristanti, R.A., 2012. identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of polyporus sp. s133. journal of environmental management, 111(0), pp. 115-119.

[2] Hadibarata, T., Teh, Z., Rubiyatno, Zubir, M., Khudhair, A., Yusoff, A., Salim, M. and Hidayat, T., 2013. identification of naphthalene metabolism by white rot fungus pleurotus eryngii. bioprocess and biosystems engineering, 36(10), pp. 1455-1461.

[3] Mohammadian, M., Fathi-roudsari, M., Mollania, N., Badoei-dalfard, A., khajeh, k., 2010. enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. journal of industrial microbiology & biotechnology, 37(8), pp. 863-869.

[4] Mollania, N., Khajeh, K., Ranjbar, B., Rashno, F., Akbari, N. and Fathi-roudsari, m., 2013. an efficient in vitro refolding of recombinant bacterial laccase in escherichia coli. enzyme and microbial technology, 52(6–7), pp. 325-330.

[5] Sharma, P., Goel, R. and Capalash, N., 2007. bacterial laccases. world journal of microbiology and biotechnology, 23(6), pp. 823-832.

[6] Zeng, J., Lin, X., Zhang, J., Zhu, H., Chen, H. and Wong, M., 2013. successive transformation of benzo[a]pyrene by laccase of trametes versicolor and pyrene-degrading mycobacterium strains. applied microbiology and biotechnology, 97(7), pp. 3183-3194.

[7] Huang H., Cai R., Du Y., Zeng T., 1996. The automatic kinetic spectrophotometric assay for laccase activity usingo-phenylenediamine. laboratory robotics and automation, 8(4), pp 231-235.