Difference between revisions of "Part:BBa K1100062"

 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K1100062 short</partinfo>
 
<partinfo>BBa_K1100062 short</partinfo>
It is amongst the mutant library of RNA-OUT, part of a well-known antisense RNA-mediated translation control system in E. coli called RNA-IN-RNA-OUT. It derived from the copy-number control element from the insertion sequence IS10, wherein the RNA-OUT inhibits transposase expression. RNA-OUT base pairs to the translation initiation region of the transposase mRNA (RNA-IN), thereby repressing translation both by preventing ribosome binding and by promoting transcription degradation. The 5’ end of the unstructured, unstable sense RNA-IN is complementary to the top of the loop domain and to one entire side of the stable RNA-OUT hairpin. Earlier studies have suggested that the 5 base pairs in the 5’ end of RNA-IN and in the loop domain of RNA-OUT determine the initiation of RNA duplex formation. The mutation of these 5 base pairs resulted in a library of orthogonal RNA regulators of translation. The translation repression rate of these regulators and the cross-talk of them are shown as followed:
+
<p></p>It is amongst the mutant library of RNA-OUT, part of a well-known antisense RNA-mediated translation control system in E. coli called RNA-IN-RNA-OUT. It derived from the copy-number control element from the insertion sequence IS10, wherein the RNA-OUT inhibits transposase expression. RNA-OUT base pairs to the translation initiation region of the transposase mRNA (RNA-IN), thereby repressing translation both by preventing ribosome binding and by promoting transcription degradation. The 5’ end of the unstructured, unstable sense RNA-IN is complementary to the top of the loop domain and to one entire side of the stable RNA-OUT hairpin. Earlier studies have suggested that the 5 base pairs in the 5’ end of RNA-IN and in the loop domain of RNA-OUT determine the initiation of RNA duplex formation. The mutation of these 5 base pairs resulted in a library of orthogonal RNA regulators of translation. The translation repression rate of these regulators and the cross-talk of them are shown as followed:
[[File:Repression rate.jpg|600px|thumb|center|Figure1.Repression rate]]
+
[[File:Repression rate.jpg|600px|thumb|center|'''Figure 1'''. Repression rate]]
[[File:S04.jpg|400px|thumb|center|Figure2.RNAIN/OUTS04 binding duplex]]
+
[[File:S04.jpg|400px|thumb|center|'''Figure 2'''. RNAIN/OUTS04 binding duplex]]
 +
[[File:OUTS4.jpg|400px|thumb|center|'''Figure 3'''. predicted structure of RNAOUTS4]]
  
 +
== References ==
 +
<p></p>Mutalik V K, Qi L, Guimaraes J C, et al. Rationally designed families of orthogonal RNA regulators of translation[J]. Nature Chemical Biology, 2012, 8(5): 447-454.
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here

Latest revision as of 22:17, 27 September 2013

RNA-OUT S4

It is amongst the mutant library of RNA-OUT, part of a well-known antisense RNA-mediated translation control system in E. coli called RNA-IN-RNA-OUT. It derived from the copy-number control element from the insertion sequence IS10, wherein the RNA-OUT inhibits transposase expression. RNA-OUT base pairs to the translation initiation region of the transposase mRNA (RNA-IN), thereby repressing translation both by preventing ribosome binding and by promoting transcription degradation. The 5’ end of the unstructured, unstable sense RNA-IN is complementary to the top of the loop domain and to one entire side of the stable RNA-OUT hairpin. Earlier studies have suggested that the 5 base pairs in the 5’ end of RNA-IN and in the loop domain of RNA-OUT determine the initiation of RNA duplex formation. The mutation of these 5 base pairs resulted in a library of orthogonal RNA regulators of translation. The translation repression rate of these regulators and the cross-talk of them are shown as followed:
Figure 1. Repression rate
Figure 2. RNAIN/OUTS04 binding duplex
Figure 3. predicted structure of RNAOUTS4

References

Mutalik V K, Qi L, Guimaraes J C, et al. Rationally designed families of orthogonal RNA regulators of translation[J]. Nature Chemical Biology, 2012, 8(5): 447-454.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]