Difference between revisions of "Part:BBa K842014"

 
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K842014 short</partinfo>
 
<partinfo>BBa_K842014 short</partinfo>
 
+
[[Image:USC_T7_RBS_cheZ.gif|300px|right]]
 
T7 serves as a promoter that is stimulated by IPTG. RBS is a sequence in DNA located upstream of the start codon. It affects the rate at which the open reading frame is translated. CheZ is a regulatory protein that constantly dephosphorylates cheY that is attached to a flagellum. The incessant dephosphorylation is what causes bacteria to run, stop, and tumble when in an environment that has a concentration gradient and remain responsive to any changes in chemical concentration. Together, cheZ is induced by the presence of IPTG.
 
T7 serves as a promoter that is stimulated by IPTG. RBS is a sequence in DNA located upstream of the start codon. It affects the rate at which the open reading frame is translated. CheZ is a regulatory protein that constantly dephosphorylates cheY that is attached to a flagellum. The incessant dephosphorylation is what causes bacteria to run, stop, and tumble when in an environment that has a concentration gradient and remain responsive to any changes in chemical concentration. Together, cheZ is induced by the presence of IPTG.
  

Latest revision as of 01:23, 4 October 2012

T7 RBS cheZ

USC T7 RBS cheZ.gif

T7 serves as a promoter that is stimulated by IPTG. RBS is a sequence in DNA located upstream of the start codon. It affects the rate at which the open reading frame is translated. CheZ is a regulatory protein that constantly dephosphorylates cheY that is attached to a flagellum. The incessant dephosphorylation is what causes bacteria to run, stop, and tumble when in an environment that has a concentration gradient and remain responsive to any changes in chemical concentration. Together, cheZ is induced by the presence of IPTG.

Used for researcher control of signaling mechanisms that influence flagella function.

Cloning and Uses This part was generated via PCR from the E. coli strain DH5α and cloned into the vector pSB1C3. It is to be used with other chemotaxis genes to form a complete regulatory pathway that controls the response system in MCP and the direction of rotation in flagella.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]