Coding
EpsE

Part:BBa_K143032

Designed by: Chris Hirst   Group: iGEM08_Imperial_College   (2008-09-18)

EpsE Molecular Clutch Gene of B. subtilis


The epsE gene of the exopolysaccharide synthesis operon of B. subtilis has been suggested to function in a manor similar to a molecular clutch#1. If expressed inside a cell it will disengage the flagellum from the motor proteins in the cell membrane, causing the cell to no longer be able to swim effectively. As such EpsE could potentially be used as a controller of B. subtilis movement.


Though the EPS operon is normally repressed in B. subtilis, it is beneficial for the original copy of epsE gene to be knocked out if EpsE is synthetically expressed. This can be achieved by integrating over the epsE gene with the epsE integration Biobricks (BBa_K143005 and BBa_K143006) - with or without an insert - which contain in-frame stop codons.


Although many bacterial flaggelar assemblies contain proteins that are similar in shape, there is no guarantee that the epsE gene will function correctly in any host cell other than B. subtilis



Sequence and Features

Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 762
    Illegal AgeI site found at 512
  • 1000
    COMPATIBLE WITH RFC[1000]


References

<biblio>

  1. 1 pmid=18566286

</biblio>


[edit]
Categories
//chassis/prokaryote/Bsubtilis
Parameters
None